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abbreviations

Table of common abbreviations

Syntax

tbl = abbreviations

Description

tbl = abbreviations returns a table of common English abbreviations.

Examples

Table of Abbreviations

View a table of abbreviations. You can use this table to detect abbreviations and
sentences when using addSentenceDetails.

tbl = abbreviations;

head(tbl)
ans=8x2 table
Abbreviation Usage

"aba" regular
"abc" regular
"abf" regular
"abh" regular
"abohm" regular
"abs" regular
"abt" regular
"abv" regular



abbreviations

Output Arguments

tb1l — Table of abbreviations

table

Table of abbreviations. The addSentenceDetails and splitSentences functions, by

default, use this table to detect sentence boundaries.

The table has two variables:

* Abbreviation - Abbreviation, specified as a string

* Usage - Type of abbreviation, specified as a categorical scalar

The following table describes the possible values of Usage and the behavior of
addSentenceDetails and splitSentences when observing abbreviations of these

types.
Usage Behavior Example Example Text |Detected
Abbreviation Sentences
regular If the next word |appt "Book an "Book an
is a capitalized appt. We'll |appt."
sentence starter, meet then."
then break at "We'll meet
the trailing then."
period. "Book an "Book an
Otherwise, do appt. today."|appt. today."
not break at the
trailing period.
inner Do not break Dr "Dr. Smith." ["Dr. Smith."
after trailing
period.
reference If the next token |fig "See fig. 3."|"See fig. 3."

is not a number,
then break at a
trailing period.
If the next token
is a number,
then do not
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Usage Behavior Example Example Text |Detected
Abbreviation Sentences
break at the "Try a fig. |"Try a fig."
trailing period. They are
nice." "They are
nice."

unit If the previous |in "The height |"The height
word is a is 30 in. The|is 30 in."
number and the width is 10
following word in." "The width is
is a capitalized 10 in."
sentence starter,
then break at a
trailing period.
If the previous "The item is |["The item is
word is a 10 in. wide."|10 in. wide."
number and the
following word
is not
capitalized, then
do not break at a
trailing period.
If the previous "Come in. Sit|"Come in."
word is not a down."
number, then "Sit down."
break at a
trailing period.

See Also

addSentenceDetails | splitSentences | stopWords | tokenDetails |
tokenizedDocument

Introduced in R2018a
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addDocument

Add documents to bag-of-words or bag-of-n-grams model

Syntax

newBag = addDocument (bag,documents)

Description

newBag = addDocument(bag,documents) adds documents to the bag-of-words or
bag-of-n-grams model bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bagOfWords(documents)

bag =
bag0fWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument ([
"a third example of a short sentence"
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"another short sentence"]);
newBag = addDocument(bag,documents)

newBag =
bagOfWords with properties:

Counts: [4x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a directory, then you can import the text
data into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have
filenames "exampleSonnetN. txt", where N is the number of the sonnet. Specify the
read function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =
FileDatastore with properties:
Files: {
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
... and 1 more
}

UniformRead: 0
ReadFcn: @extractFileText

AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bag0fWords
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bag =
bagOfWords with properties:

Counts: [
Vocabulary: [
NumWords: O
NumDocuments: 0

]
1x0 string]

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]

NumWords: 276
NumDocuments: 4

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagOfNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors
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Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

Output Arguments

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of
newBag is the same as the type of bag.

See Also

bagOfNgrams | bag0OfWords | removeDocument | removeEmptyDocuments |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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addSentenceDetails

Add sentence numbers to documents

Syntax

newDocuments = addSentenceDetails(documents)
newDocuments addSentenceDetails(documents,Name,Value)

Description

newDocuments = addSentenceDetails(documents) detects the sentence
boundaries in documents. To get the sentence information from newDocuments, use
tokenDetails.

newDocuments = addSentenceDetails(documents,Name,Value) specifies
additional options using one or more name-value pair arguments.

Examples

Add Sentence Details to Documents

Create a tokenized document from the text in exampleSonnetl. txt.
filename = "exampleSonnetl.txt";

str = extractFileText(filename);

document = tokenizedDocument(str)

document =
tokenizedDocument:

124 tokens: From fairest creatures we desire increase , That thereby beauty's rose 1

View the token details of the first 15 tokens.
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details = tokenDetails(document);

document = addSentenceDetails(document);
details = tokenDetails(document);

head(details, 15)
ans=15x4 table
Token DocumentNumber LineNumber Type

"From" 1 1 letters
"fairest" 1 1 letters
"creatures" 1 1 letters
"we" 1 1 letters
"desire" 1 1 letters
"increase" 1 1 letters
o 1 1 punctuation
"That" 1 2 letters
"thereby" 1 2 letters
"beauty's" 1 2 other
"rose" 1 2 letters
"might" 1 2 letters
"never" 1 2 letters
"die" 1 2 letters
o 1 2 punctuation

Add sentence details to the documents using addSentenceDetails. This function adds
the sentence numbers to the table returned by tokenDetails. View the updated token
details of the first 15 tokens.

head(details, 15)
ans=15x5 table
Token DocumentNumber SentenceNumber LineNumber Type

"From" 1 1 1 letters
"fairest" 1 1 1 letters
"creatures" 1 1 1 letters
"we" 1 1 1 letters
"desire" 1 1 1 letters
"increase" 1 1 1 letters
o 1 1 1 punctuation
"That" 1 1 2 letters
"thereby" 1 1 2 letters



addSentenceDetails

"beauty's" 1 1 2 other
"rose" 1 1 2 letters
"might" 1 1 2 letters
"never" 1 1 2 letters
"die" 1 1 2 letters

o 1 1 2 punctuation

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Abbreviations',["cm” "mm" "in"] species to detect sentences
boundaries where these abbreviations are followed by a period and a capitalized sentence
starter.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations, specified as a string array, character vector, cell array of character
vectors, or a table.

If Abbreviations is a string array, character vector, or cell array of character vectors,
then the function treats these as regular abbreviations. If the next word is a capitalized
sentence starter, then the function breaks at the trailing period. The function ignores any
differences in the letter case of the abbreviations. Specify the sentence starters using the
Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify
Abbreviations as a table. The table must have variables named Abbreviation and
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Usage, where Abbreviation contains the abbreviations, and Usage contains the type of
each abbreviation. The following table describes the possible values of Usage, and the
behavior of the function when passed abbreviations of these types.

1-12

Usage Behavior Example Example Text |Detected
Abbreviation Sentences
regular If the next word [appt "Book an "Book an
is a capitalized appt. We'll |appt."
sentence starter, meet then.”
then break at "We'll meet
the trailing then."
period. "Book an "Book an
Otherwise, do appt. today."|appt. today."
not break at the
trailing period.
inner Do not break Dr "Dr. Smith." ["Dr. Smith."
after trailing
period.
reference If the next token |fig "See fig. 3."|"See fig. 3."
is not a number, " . " P
then break at a T:]-Ie:y a fig. Try a fig.
oy X y are
trailing period. e U "They are
If the next token nice."
is a number,
then do not
break at the
trailing period.
unit If the previous |in "The height ["The height
word is a is 30 in. The|is 30 in."
number and the width is 10
following word in." "The width is
is a capitalized 10 in."
sentence starter,
then break at a
trailing period.




addSentenceDetails

Usage Behavior Example Example Text |Detected
Abbreviation Sentences

If the previous "The item is |"The item is

word is a 10 in. wide."|10 in. wide."

number and the
following word
is not
capitalized, then
do not break at a
trailing period.

If the previous "Come in. Sit|"Come in."
word is not a down."

number, then "Sit down."
break at a

trailing period.

The default value is the output of the abbreviations function.

Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with
mixed single letters and periods, such as "U.S.A." as regular abbreviations. You do not
need to include these abbreviations in Abbreviations.

Example: ["cm mm" "in"]

Data Types: char | string | table | cell

Starters — Words that start a sentence
string array | character vector | cell array of character vectors

Words that start a sentence, specified as a string array, character vector, or a cell array of
character vectors. If a sentence starter appears capitalized after a regular abbreviation,
then the function detects a sentence boundary at the trailing period. The function ignores
any differences in the letter case of the sentence starters.

The default value is the output of the stopWords function.

Data Types: char | string | cell
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Output Arguments

newDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the sentence
information from newDocuments, use tokenDetails.

See Also

abbreviations | splitSentences | stopWords | tokenDetails |
tokenizedDocument

Introduced in R2018a
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bagOfNgrams

Bag-of-n-grams model

Description

A bag-of-n-grams model records the number of times that each n-gram appears in each
document of a collection. An n-gram is a collection of n successive words.

bag0fNgrams does not split text into words. To create an array of tokenized documents,
see tokenizedDocument.

Creation

Syntax

bag = bagOfNgrams

bag = bag0OfNgrams (documents)

bag = bagO0fNgrams( _ , 'NgramLengths',lengths)
bag = bagO0OfNgrams (uniqueNgrams, counts)
Description

bag = bag0fNgrams creates an empty bag-of-n-grams model.

bag = bag0fNgrams (documents) creates a bag-of-n-grams model and counts the
bigrams (pairs of words) in documents.

bag = bagO0fNgrams(  , 'NgramLengths', lengths) counts n-grams of the
specified lengths using any of the previous syntaxes.

bag = bag0fNgrams(uniqueNgrams, counts) creates a bag-of-n-grams model using
the n-grams in uniqueNgrams and the corresponding frequency counts in counts. If
uniqueNgrams contains <missing> values, then the corresponding values in counts
are ignored.
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Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

uniqueNgrams — Unique n-gram list
string array | cell array of character vectors

Unique n-gram list, specified as a NumNgrams-by-maxN string array or cell array of
character vectors, where NumNgrams is the number of unique n-grams, and maxN is the
length of the largest n-gram.

The value of uniqueNgrams (i, j) is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of
uniqueNgrams are empty.

If uniqueNgrams contains <missing>, then the function ignores the corresponding
values in counts.

Each n-gram must have at least one word.

Example: ["An" ; "An" "example"; "example" ""]

Data Types: string | cell

counts — Frequency counts of n-grams
matrix of nonnegative integers

Frequency counts of n-grams corresponding to the rows of uniqueNgrams, specified as a
matrix of nonnegative integers. The value counts (i, j) corresponds to the number of
times the n-gram uniqueNgrams(j, :) appears in the ith document.

counts must have as many columns as uniqueNgrams has rows.

lengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.



bagOfNgrams

Properties

Counts — N-gram counts per document
sparse matrix

N-gram counts per document, specified as a sparse matrix.

Ngrams — Unique n-grams in model
string array

Unique N-grams in the model, specified as a string array. Ngrams (i, j) is the jth word
of the ith n-gram. If the number of columns of Ngrams is greater than the number of
words in the n-gram, then the remaining entries are empty.

NgramLengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

NumNgrams — Number of n-grams seen
nonnegative integer

Number of n-grams seen, specified as a nonnegative integer.

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions

encode Encode documents as matrix of word or n-gram counts
tfidf Term Frequency-Inverse Document Frequency (tf-idf) matrix
topkngrams Most frequent n-grams
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addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams
model

removeEmptyDocuments  Remove empty documents from tokenized document array,
bag-of-words model, or bag-of-n-grams model

removeNgrams Remove n-grams from bag-of-n-grams model

removelnfrequentNgrams Remove infrequently seen n-grams from bag-of-n-grams
model

join Combine multiple bag-of-words or bag-of-n-grams models

wordcloud Create word cloud chart from text, bag-of-words model, bag-

of-n-grams model, or LDA model

Examples

Create Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);
documents(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never d:
(2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys f:
(3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose f
(4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys 1
(5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrant
(6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld mak
(7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newap
(8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delight
(9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issue’
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt
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Create a bag-of-n-grams mdoel.

bag = bag0fNgrams(documents)

bag =

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams :
NumDocuments:

[154x8799 double]
[1x3092 string]
[8799x2 string]

2

8799

154

Visualize the model using a word cloud.

figure
wordcloud(bag);
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thy deeds
thou knowst p—

erehedetioveten imes  gyeet Ir:we

gatnelove thou ¢ hast ruaiove

s thou mayst
shalt find beauty thy -:m?sweet |Ove theethee th},r reine thy

wiessores thou shalt thou dost thy [OVe

dear love

Rl dOSt thou thy' self thou wilt =%

give thy thDU thina thou 0 thou yet thy wilt thou
say love th"r::u shuuldst th O u a rtthy worth ik thee
seif thy doth live beauty stil
thou mmethﬂu thy , make love reenre: love loves [OVE ‘t]‘lyr love though

eye hath thy beauty mine eye th heart thy face

syedoth  -thy beautmiy g== whydast Jhiis: © olet love ke

th%&ﬁﬁh mlne eyESm|ne Own upon J[h}p’ thee make

thou canst

m_smnnga;h?auir thy sweet thine eyeswsimons

. back again 4.,
thy st ﬂ'lll'le OWIN seff thou thy dear o give

v na st thou sweet self time come

wve whom thine eye  truth beauty
against time thou gawst

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and
trigrams), specify 'NgramLengths' to be the vector [2 3].

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])

bag =
bagOfNgrams with properties:

Counts: [154x18022 double]
Vocabulary: [1x3092 string]
Ngrams: [18022x3 string]
NgramLengths: [2 3]
NumNgrams: 18022
NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).
topkngrams(bag, 10, 'NGramLengths"',2)

ans=10x3 table

Ngram Count NgramLength
"thou" "art" " 34 2
"mine" "eye" " 15 2
"thy" "self" " 14 2
"thou" "dost" " 13 2
"mine" "own" e 13 2
"thy" "sweet" " 12 2
"thy" "love" " 11 2
"dost" "thou" " 10 2
"thou" "wilt" " 10 2
"love" "thee" " 9 2

View the 10 most common n-grams of length 3 (trigrams).
topkngrams(bag, 10, 'NGramLengths',3)

ans=10x3 table
Ngram Count NgramLength

"thy" "sweet" "self" 4 3
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"why" "dost" "thou" 4 3
"thy" "self" "thy" 3 3
"thou" "thy" "self" 3 3
"mine" "eye" "heart" 3 3
"thou" "shalt" "find" 3 3
"fair" "kind" "true" 3 3
"thou" "art" "fair" 2 3
"Tove" "thy" "self" 2 3
"thy" "self" "thou" 2 3

Create Bag-of-N-grams Model from Unique N-grams and Counts

Create a bag-of-n-grams model using a string array of unique n-grams and a matrix of
counts.

Load the example n-grams and counts from sonnetsBigramCounts.mat. This file
contains a string array uniqueNgrams, which contains the unique n-grams, and the
matrix counts, which contains the n-gram frequency counts.

load sonnetsBigramCounts.mat
View the first few n-grams in uniqueNgrams.
uniqueNgrams(1:10,:)

ans = 10x2 string array

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
"rose" "might"
"might" "never"
"never" "die"

"die" "riper"

Create the bag-of-n-grams model.

bag = bag0fNgrams(uniqueNgrams, counts)
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bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

. “Analyze Text Data Using Multiword Phrases”
. “Analyze Text Data Using Topic Models”

. “Visualize Text Data Using Word Clouds”

. “Classify Text Data Using Deep Learning”

See Also

addDocument | bag0fWords | encode | join | removeDocument |
removeEmptyDocuments | removeInfrequentNgrams | removeNgrams | tfidf |
tokenizedDocument | topkngrams | wordcloud

Topics

“Analyze Text Data Using Multiword Phrases”
“Analyze Text Data Using Topic Models”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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bagOfWords

Bag-of-words model

Description

A bag-of-words model (also known as a term-frequency counter) records the number of
times that words appear in each document of a collection.

bagOfWords does not split text into words. To create an array of tokenized documents,
see tokenizedDocument.

Creation

Syntax

bag = bag0OfWords

bag = bag0OfWords(documents)

bag = bag0fWords(uniqueWords, counts)
Description

bag = bag0fWords creates an empty bag-of-words model.

bag = bag0OfWords(documents) counts the words appearing in documents and
returns a bag-of-words model.

bag = bag0fWords(uniqueWords, counts) creates a bag-of-words model using the
words in uniqueWords and the corresponding frequency counts in counts.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors



bagOfWords

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If
uniqueWords contains <missing>, then the function ignores the missing values. The
size of uniqueWords must be 1-by-V where V is the number of columns of counts.

Example: ["an" "example" "list"]

Data Types: string | cell

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of
nonnegative integers. The value counts (i, j) corresponds to the number of times the
word uniqueWords (j) appears in the ith document.

counts must have numel(uniqueWords) columns.

Properties

Counts — Word counts per document
sparse matrix

Word counts per document, specified as a sparse matrix.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

NumWords — Number of words seen
nonnegative integer

Number of words seen, specified as a nonnegative integer.
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NumDocuments — Number of documents seen

nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions

encode

tfidf

topkwords
addDocument
removeDocument

removeEmptyDocuments
removeWords
removelnfrequentWords

join
wordcloud

Examples

Encode documents as matrix of word or n-gram counts
Term Frequency-Inverse Document Frequency (tf-idf) matrix
Most important words in bag-of-words model or LDA topic
Add documents to bag-of-words or bag-of-n-grams model
Remove documents from bag-of-words or bag-of-n-grams
model

Remove empty documents from tokenized document array,
bag-of-words model, or bag-of-n-grams model

Remove selected words from documents or bag-of-words
model

Remove words with low counts from bag-of-words model
Combine multiple bag-of-words or bag-of-n-grams models
Create word cloud chart from text, bag-of-words model, bag-
of-n-grams model, or LDA model

Create Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag = bagO0fWords(documents)



bagOfWords

bag =
bag0fWords wit

Counts:
Vocabulary:
NumWords:
NumDocuments:

h properties:

[154x3092 double]
[1x3092 string]
3092

154

View the top 10 words and their total counts.

tbl = topkwords(bag,10)

tb1l=10x2 table
Word Count
"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word

counts.

uniqueWords
counts = [

[II

LR oRr
TOOON

[cNoNGNO]
—hn—lU‘ll—ll—l_

a" "an" "another" "example" "final" "sentence" "third"];

niqueWords, counts)
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bag =
bagOfWords with properties:

Counts: [4x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a directory, then you can import the text
data into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have
filenames "exampleSonnetN. txt", where N is the number of the sonnet. Specify the
read function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =
FileDatastore with properties:
Files: {
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
" . ..\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar
... and 1 more
}

UniformRead: 0
ReadFcn: @extractFileText

AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag bag0fWords

bag =
bagOfWords with properties:

1-28



bagOfWords

Counts: []
Vocabulary: [1x0 string]
NumWords: O

NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagO0fWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]
NumWords: 276
NumDocuments: 4

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeWords(bag, stopWords)

newBag =
bagOfWords with properties:
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Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]
NumWords: 4
NumDocuments: 2

Most Frequent Words of Bag-of-Words Model
Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bag0OfWords.
bag = bag0OfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Find the top five words.
T = topkwords(bag);
Find the top 20 words in the model.

k
T

20;
topkwords (bag, k)
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T=20x2 table

Word Count
"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53
"beauty" 52
"nor" 52
"art" 51
"yet" 51
"o" 50
"heart" 50

Create Tf-idf Matrix

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bagO0fWords with properties:
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Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507

[cNoNoNoNoNoNoNoNO)
[cNoNoNoNoNoNoNoNO)
[cNoNoNoNoNoNoNoNO]

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

4.3438

[cNoNoNoNoNoNoNoNO]

NN

.2644
.5287

.2644

.2644
.2644

.2644

3.2452

[cNoNoNoNoNoNoNoNo)

3.8918

[cNoNoNoNoNoNoNoNO]

separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text

into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bagOfWords (documents)

bag

bag =
bagOfWords with properties:
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Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

myself jame hast .
athars WwWorld days ypon night
gr;.ujthﬂugh bea ut ||1||1|+]ath
Slg:t self y Imd tlmes alone
coma faks 1 thUS g

= false even

make mlnel

wumloves e
nﬂthmg Sha” Ovet Il’le fall
th h “NON" heart
cenpawarth doth Eye truth N

,.ur_mr e dear best I" well beautys
wee SWeet 'f art ¥ i eyesr
wenddce might old mind Say against

= day yet :th stll! o
away «_,:1-] ive better every praise
) why show life know
thought 9934 A
musa part

thoughts
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Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a directory, then you can import the text
data and create a bag-of-words model in parallel using parfor. If you have Parallel
Computing Toolbox™ installed, then the parfor loop runs in parallel, otherwise, it runs
in serial. Use join to combine an array of bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have
filenames "exampleSonnetN. txt", where N is the number of the sonnet. Get a list of the
files and their locations using dir.

fileLocation = fullfile(matlabroot, 'examples', 'textanalytics', 'exampleSonnet*.txt');
fileInfo = dir(filelLocation)

fileInfo = 5x1 struct array with fields:
name
folder
date
bytes
isdir
datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of
bag-of-words models.

bag = bagOfWords;

numFiles numel(fileInfo);
parfor i l:numFiles
f = fileInfo(i);
filename = fullfile(f.folder, f.name);

textData extractFileText(filename);
document tokenizedDocument (textData);
bag(i) = bagOfWords(document);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 12 workers.

Combine the bag-of-words models using join.

bag = join(bag)
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bag =
bagOfWords with properties:

Counts: [5x3275 double]
Vocabulary: [1x3275 string]
NumWords: 3275
NumDocuments: 5

. “Prepare Text Data for Analysis”

. “Analyze Text Data Using Topic Models”

. “Analyze Text Data Using Multiword Phrases”
. “Visualize Text Data Using Word Clouds”

. “Classify Text Data Using Deep Learning”

Tips

* Ifyou intend to use a held out test set for your work, then you should partition your
text data before using bagOfWords. Otherwise, the bag-of-words model may bias your
analysis.

See Also

addDocument | encode | join | removeDocument | removeEmptyDocuments |
removeInfrequentWords | removeWords | tfidf | tokenizedDocument |
topkwords

Topics

“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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context

Search documents for word occurrences in context

Syntax

context(documents,word)
context (documents,word, contextLength)
context ( , 'Source',source)

T
T
T

Description

T = context(documents,word) searches for occurrences of word in documents and
returns a table showing word in context and its locations.

T = context(documents,word, contextLength) specifies the length of the context
to return.

T = context( , 'Source',source) displays the context in the original source
string source if the word is found.

Examples

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Search for the word "life".

tbl = context(documents,"life");

head(tbl)
ans=8x3 table
Context Document Word
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi" 16 36
" heaven knows tomb hides life shows half parts write b" 17 14
"he eyes long lives gives life thee . 18 69
"tender embassy love thee life made four two alone sink" 45 23
"ves beauty though lovers 1life beauty shall black lines" 63 50
"s shorn away live second life second head ere beautys " 68 27

View the occurrences in a string array.
tbl.Context

ans = 23x1 string array
"consumst thy self single life ah thou issueless shalt "
"ainted counterfeit lines life life repair times pencil"
"d counterfeit lines life life repair times pencil pupi"
" heaven knows tomb hides life shows half parts write b"
"he eyes long lives gives life thee !
"tender embassy love thee life made four two alone sink"
"ves beauty though lovers life beauty shall black lines"
"s shorn away live second life second head ere beautys "
"e rehearse let love even life decay lest wise world lo"
"st bail shall carry away life hath line interest memor"
"art thou hast lost dregs life prey worms body dead cow"
" thoughts food life sweetseasond showers gro"
"tten name hence immortal life shall though once gone w"
" beauty mute others give life bring tomb lives life fa"
"ve life bring tomb lives life fair eyes poets praise d"
" steal thyself away term life thou art assured mine 1i"
"fe thou art assured mine life longer thy love stay dep"
" fear worst wrongs least life hath end better state be"
"anst vex inconstant mind life thy revolt doth lie o ha"
" fame faster time wastes life thou preventst scythe cr"
"ess harmful deeds better life provide public means pub"
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"ate hate away threw savd life saying
" many nymphs vowd chaste life keep came tripping maide"

Specify Context Length

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Search for the word "life" and return each occurrence with a 15-character context before
and after.

tbl = context(documents,"life",15);

head(tbl)
ans=8x3 table
Context Document Word
"hy self single life ah thou issuel" 9 10
"nterfeit lines life life repair ti" 16 35
"eit lines life life repair times p" 16 36
"ows tomb hides life shows half par" 17 14
"ng lives gives life thee " 18 69
"assy love thee life made four two " 45 23
" though lovers life beauty shall b" 63 50
"ay live second life second head er" 68 27

View the occurrences in a string array.
tbl.Context

ans = 23x1 string array
"hy self single life ah thou issuel”
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"nterfeit lines life life repair ti"
"eit lines life life repair times p"
"ows tomb hides life shows half par"
"ng lives gives life thee !
"assy love thee life made four two
" though lovers life beauty shall b"
"ay live second life second head er"
" let love even life decay lest wis"
"all carry away life hath line inte"
"ast lost dregs life prey worms bod"
" thoughts food life sweetseasond s"
"hence immortal life shall though o"
"te others give life bring tomb liv"
"ing tomb lives life fair eyes poet"
"self away term life thou art assur"
"t assured mine life longer thy lov"
"t wrongs least life hath end bette"
"nconstant mind life thy revolt dot"
"er time wastes life thou preventst”
"l deeds better life provide public"
"way threw savd life saying "
"hs vowd chaste life keep came trip"

Specify Source Text
Specify source text to display context.

Load the sonnets. txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt, [newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of paragraphs,
and the remaining sonnets appear in every second element afterwards.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument (sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")
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T =

23x3 table
Context Document Word

"sum'st thy self in singl life ? ah ! if thou issueless” 9 18
" : so should the line of life that life repair , which" 16 73
"ld the line of life that life repair , which thi , tim" 16 75
"s a tomb which hide your life , and show not half your" 17 34
" live thi , and thi give life to thee . " 18 128
"ssi of love to thee , my life , be made of four , with" 45 53
"eauti , though my lover' life : hi beauti shall in the" 63 100
" awai , to live a second life on second head ; er beau" 68 59
"t your love even with my life decai ; lest the wise wo" 71 118
"shall carri me awai my life hath in thi line some in" 74 18
"ast but lost the dreg of life , the prei of worm , my " 74 83
"to my thought as food to life , or as sweet-season'd s" 75 10
"ur name from henc immort life shall have , though i , " 81 42
", when other would give life , and bring a tomb . the" 83 108
"a tomb . there live more life in on of your fair ey th" 83 118
"yself awai , for term of life thou art assur mine ; an" 92 13
"hou art assur mine ; and life no longer than thy love " 92 20
" in the least of them my life hath end . i see a bette" 92 56
"onst mind , sinc that my life on thy revolt doth lie ." 92 89
"me faster than time wast life , so thou prevent'st hi " 100 118
"at did not better for my life provid than public mean " 111 26
"she threw , and sav'd my life , sai ' not you ' . ! 145 113
"i nymph that vow'd chast life to keep came trip by ; b" 154 22

Since the words are normalized, the contexts may not be easy to read. To view the

contexts using the original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life", 'Source',sonnets)

T =

23x3 table
Context Document Word
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"um'st thy self in single
": So should the lines of
"d the lines of life that
" a tomb Which hides your
"ves this, and this gives
"assy of love to thee, My
"eauty, though my lover's
"n away, To live a second
"t your love even with my
" shall carry me away, My
"st but lost the dregs of
"o my thoughts as food to
"name from hence immortal
", When others would give
"a tomb. There lives more
"hyself away, For term of
"ou art assured mine; And
" in the least of them my
"tant mind, Since that my
" faster than Time wastes
"at did not better for my
" she threw, And sav'd my
"nymphs that vow'd chaste

Input Arguments

documents — Input documents
tokenizedDocument array

life? Ah! if thou issueless s"
life that life repair, Which "
life repair, Which this, Time"
life, and shows not half your"
life to thee. !
life, being made of four, wit"
life: His beauty shall in the"
life on second head; Ere beau"
life decay; Lest the wise wor"
life hath in this line some i"
life, The prey of worms, my b"
life, Or as sweet-season'd sh"
life shall have, Though I, on"
life, and bring a tomb. There"
life in one of your fair eyes"
life thou art assured mine; A"
life no longer than thy love "
life hath end. I see a better"
life on thy revolt doth lie. "
life, So thou prevent'st his "
life provide Than public mean"
life, saying 'not you'. "
life to keep Came tripping by"

Input documents, specified as a tokenizedDocument array.

word — Word to find

string scalar | character vector | scalar cell array

16
16
17
18
45
63

71
74
74
75
81
83

92
92
92
92
100
111
145
154

18
73
75
34
128
53
100

118
18
83
10
42

108

118
13
20
56

118
26
113
22

Word to find in context, specified as a string scalar, character vector, or scalar cell array

containing a character vector.

Data Types: char | string | cell

contextLength — Context length

25 (default) | positive integer
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Context length, specified as a positive integer.

source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string
array or a cell array of character vectors. If the input documents are preprocessed, and
you have the source text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

Output Arguments

T — Table of contexts
table

Table of contexts with these columns:

Context String containing the queried word in context
Document Numeric index of the document containing the word
Word Numeric index of the word in the document

See Also

doc2cell | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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decodeHTMLENntities

Convert HTML and XML entities into characters

Syntax

newStr = decodeHTMLEntities(str)

Description

newStr = decodeHTMLEntities(str) replaces HTML and XML character entities and
numeric character references in the elements of str with their Unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their unicode equivalent.

str = ["&Lt;&gt; " "R&amp;D"];
newStr = decodeHTMLEntities(str)

newStr = 1x2 string array
II<>II IIR&DII

Replace HTML numeric character references with their unicode equivalent. Unicode
character with hex code &#x20 is a space.

str = "R&#x20;D";
newStr = decodeHTMLEntities(str)

newStr =
"R D"

1-43



1 Functions — Alphabetical List

1-44

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also

erasePunctuation | eraseTags | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doclength

Length of documents in document array

Syntax

N = doclength(documents)

Description

N = doclength(documents) returns the number of tokens in each document in
documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation
characters so they do not get counted as words.

str = [ ...
"An example of a short sentence."
"A second short sentence."];
erasePunctuation(str)

str
str = 2x1 string array

"An example of a short sentence"
"A second short sentence"

str

lower(str)

str = 2x1 string array
"an example of a short sentence"
"a second short sentence"
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documents tokenizedDocument (str)

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

N = doclength(documents)
N = 2x1

6

4

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same
as the size of documents.

See Also

context | doc2cell | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”

Introduced in R2017b
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doc2cell

Convert documents to cell array of string vectors

Syntax

C = doc2cell(documents)

Description

C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The
entries of C are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.

documents = tokenizedDocument([
"an example of a short sentence”
"a second short sentence"])

documents =
1x2 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(1,2) 4 tokens: a second short sentence

@)
]

doc2cell(documents)

(@]
1]

Ix2 cell array
{1x6 string} {1x4 string}

View the first element of the cell array.
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Cc{1}

ans = 1x6 string array
"an" "example" "of" "a" "short" "sentence"

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the
words of the corresponding document.

See Also

context | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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docfun

Apply function to words in documents

Syntax

newDocuments = docfun(func,documents)

newDocuments = docfun(func,documentsl,...,documentsN)
Description

newDocuments = docfun(func,documents) calls the function specified by the
function handle func and passes elements of documents as a string vector of words.

If func accepts exactly one input argument, then the words of newDocuments (i) are
the output of func(string(documents(i))).

If func accepts two input arguments, then the words of newDocuments (i) are the
output of func(string(documents(i)),details), where details contains the
corresponding token details output by tokenDetails.

docfun does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documentsl,...,documentsN) calls the function
specified by the function handle func and passes elements of documentsl,
..,documentsN as string vectors of words, where N is the number of inputs to the
function func. The words of newDocuments (i) are the output of
func(string(documentsl(i)),...,string(documentsN(i))).

Each of documentsl,..,documentsN must be the same size.

Examples
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Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: na elpmaxe fo a trohs ecnetnes
(2,1) 4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the
string function plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text
to lowercase.

str=1[ ...
"An example of a short sentence."
"A second short sentence."];

str = erasePunctuation(str);

str = lower(str);

documentsl = tokenizedDocument(str)

documentsl =
2x1 tokenizedDocument:
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(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of
words as the corresponding documents in documentsl. The words of documents?2 are
POS tags for the corresponding words.

documents2 = tokenizedDocument ([
" det noun prep det adj noun"
" det adj adj noun"])

documents2 =
2x1 tokenizedDocument:

(1,1) 6 tokens: _det noun prep det adj _noun
(2,1) 4 tokens: det adj _adj _noun

func = @plus;
newDocuments = docfun(func,documentsl,documents2)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: an_det example noun of prep a_det short _adj sentence noun
(2,1) 4 tokens: a det second adj short adj sentence noun

The output is not the same as calling plus on the documents directly.
plus(documentsl,documents2)

ans =
2x1 tokenizedDocument:

(1,1) 12 tokens: an example of a short sentence det noun prep det adj noun
(2,1) 8 tokens: a second short sentence det adj adj noun
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Input Arguments

func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func
must accept string(documentsl(i)),...,string(documentsN(i)) as input.

Function handle to apply to words in documents. The function must have one of the
following syntaxes:

* newWords = func(words), where words is a string array of the words of a single
document.

* newWords = func(words,details), where words is a string array of the words of
a single document, and details is the corresponding table of token details given by
tokenDetails.

* [newWordsl,...,newWordsN] = func(wordsl,...,wordsN), where
wordsl, ...,wordsN are string arrays of words.

Example: @reverse

Data Types: function handle

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

bagOfWords | Llower | normalizeWords | regexprep | replace | tokenDetails |
tokenizedDocument | upper
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Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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encode

Encode documents as matrix of word or n-gram counts

Use encode to encode an array of tokenized documents as a matrix of word or n-gram
counts according to a bag-of-words or bag-of-n-grams model. To ensure that the

documents are encoded correctly, you must preprocess the input documents using the
same steps as the documents used to create the input model. For an example showing
how to create a function to preprocess text data, see “Prepare Text Data for Analysis”.

Syntax

counts encode(bag,documents)
counts encode(bag,words)
counts = encode( ,Name, Value)

Description

counts = encode(bag,documents) returns a matrix of frequency counts for
documents based on the bag-of-words or bag-of-n-grams model bag.

counts encode(bag,words) returns a matrix of frequency counts for a list of words.

counts = encode( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument ([
"an example of a short sentence"
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"a second short sentence"]);
bag = bagO0fWords(documents)

bag =
bagOfWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

documents = tokenizedDocument([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 3 tokens: a new sentence
(2,1) 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear
in bag, so it is not counted.

counts = encode(bag,documents);

full(counts)

ans = 2x7
0 0 0 1 0 1 0
0 0 0 1 0 1 1

The columns correspond to the vocabulary of the bag-of-words model.
bag.Vocabulary

ans = 1Ix7 string array
"an" "example" "of" "a" "short" "sentence" "second"
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Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);
bagO0fWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

words = ["another" "example" "of" "a" "short" "example" "sentence"];

counts = encode(bag,words)

counts =
(1,2) 2
(1,3) 1
(1,4) 1
(1,5) 1
(1,0) 1

Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [2x7 double]
Vocabulary: [1x7 string]
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NumWords: 7
NumDocuments: 2

documents = tokenizedDocument ([
"a new sentence"
"a second new sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 3 tokens: a new sentence
(2,1) 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts with documents in columns. The
word "new" does not appear in bag, so it is not counted.

counts = encode(bag,documents, 'DocumentsIn', 'columns');
full(counts)

ans = 7x2

ol S Nol SNoNoNo)
HFROHFHOOO

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bag0fNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors
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Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.

Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'DocumentsIn', 'rows' specifies the orientation of the output documents as
rOWS.

DocumentsIn — Orientation of output documents
"rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Return a matrix of frequency counts with rows corresponding to documents.

* 'columns' - Return a transposed matrix of frequency counts with columns
corresponding to documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.

Data Types: logical
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Output Arguments

counts — Word or n-gram counts
sparse matrix | cell array of sparse matrices

Word or n-gram counts, returned as a sparse matrix of nonnegative integers or a cell
array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of sparse matrices. Each element in the cell array is matrix of
word or n-gram counts of the corresponding element of bag.

See Also
bagO0fNgrams | bag0OfWords | tfidf | topkngrams | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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erasePunctuation

Erase punctuation from text and documents

Syntax

newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)

Description

newStr = erasePunctuation(str) erases punctuation and symbols from the
elements of str. The function removes characters that belong to the Unicode punctuation
or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols
from documents. If a word is empty after removing punctuation and symbol characters,
then the function removes it.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

newStr =
"its one andor two"

To insert a space where the "/" symbol is, use the replace function.

newStr = replace(str,"/"," ")
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newStr =
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr =
"its one and or two"

Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([
"An example of a short sentence."
"A short, small, and simple sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 7 tokens: An example of a short sentence .
(2,1) 8 tokens: A short , small , and simple sentence

newDocuments = erasePunctuation(documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: An example of a short sentence
(2,1) 6 tokens: A short small and simple sentence

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

Example: ["an example of a short sentence"; "a second short sentence"]
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Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Definitions

Unicode Character Categories

Each Unicode character is assigned a category. The following table summarizes the
Unicode punctuation and symbol categories and provides an example character from each
category:

Category Category Code Number of Example Character
Characters

Punctuation, [Pc] 10 3

Connector

Punctuation, Dash [Pd] 24

Punctuation, Close |[Pe] 73 )

Punctuation, Final [Pf] 10 "

quote
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Category Category Code Number of Example Character
Characters

Punctuation, Initial |[Pi] 12 “

quote

Punctuation, Other |[Po] 566 !

Punctuation, Open [Ps] 75 (

Symbol, Currency [Sc] 54 $

Symbol, Modifier [Sk] 121 ~

Symbol, Math [Sm] 948 1F

Symbol, Other [So] 5855 !

For more information, see [1].

Tips
* erasePunctuation removes punctuation characters from URLs and HTML tags. This
may prevent functions eraseTags, eraseURLs, and decodeHTMLEntities from

working as expected. If you want to use these functions to preprocess your text, then
use these functions before using erasePunctuation.

References

[1] Unicode Character Categories. http://www.fileformat.info/info/unicode/category/
index.htm

See Also

decodeHTMLEntities | eraseTags | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseTags

Erase HTML and XML tags from text

Syntax

newStr = eraseTags(str)

Description

newStr = eraseTags(str) erases HTML and XML comments and tags from the
elements of str.

The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo,
big, code, del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span,
strike, strong sub, sup, tt, u, var and wbr, and replaces all other tags with a space.

The function does not remove HTML and XML elements (the tags as well anything
between start and end tags). For example, eraseTags ( "x<a>y</a>") returns the string
"xy". It only removes the tags <a> and </a>, and does not remove the element
<a>y</a>.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the <br> tag with a space.

htmlCode = "one.<br>two";
newStr = eraseTags(htmlCode)

newStr =
"one. two"

Erase the tags from some XML code. The function removes the <sub> tags and does not
replace them with a space.
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xmlCode = "H<sub>2</sub>0";
newStr = eraseTags(xmlCode)

newStr =
IIHZOII

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also

decodeHTMLEntities | erasePunctuation | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseURLs

Erase HTTP and HTTPS URLs from text

Syntax

newStr = eraseURLs(str)

Description

newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "See http://mathworks.com for more information.";
newStr = eraseURLs(str)

newStr =
"See for more information."

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]

Data Types: string | char | cell
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Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also

decodeHTMLEntities | erasePunctuation | eraseTags | tokenizedDocument |
topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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extractFileText

Read text from PDF, Microsoft Word, HTML, and plain text files

Syntax

str = extractFileText(filename)
str extractFileText(filename,Name,Value)

Description

str = extractFileText(filename) reads the text data from a file as a string.

str = extractFileText(filename,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt
contains Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I1");

ii = strfind(str,"II");

start = i(1);

fin = ii(1);
extractBetween(str,start,fin-1)

ans =
vl
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From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");

View the second sonnet.

ii = strfind(str,"II");

iii = strfind(str,"III");

start = 1i(1);

fin = 1iii(1);
extractBetween(str,start,fin-1)

ans =
"TI

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
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To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

Extract the text from pages 3, 5 and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf",
'Pages',pages);

View the 10th sonnet.

x = strfind(str,"X");

xi = strfind(str,"XI");

start = x(1);

fin = xi(1);
extractBetween(str,start,fin-1)

ans =
Y

Is it for fear to wet a widow's eye,
That thou consum'st thy self in single life?
Ah! if thou issueless shalt hap to die,
The world will wail thee like a makeless wife;
The world will be thy widow and still weep
That thou no form of thee hast left behind,
When every private widow well may keep
By children's eyes, her husband's shape in mind:
Look! what an unthrift in the world doth spend
Shifts but his place, for still the world enjoys it;
But beauty's waste hath in the world an end,
And kept unused the user so destroys it.

No love toward others in that bosom sits

That on himself such murd'rous shame commits.
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For shame! deny that thou bear'st love to any,

Who for thy self art so unprovident.

Grant, if thou wilt, thou art belov'd of many,

But that thou none lov'st is most evident:

For thou art so possess'd with murderous hate,

That 'gainst thy self thou stick'st not to conspire,
Seeking that beauteous roof to ruinate

Which to repair should be thy chief desire.

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a directory, then you can import the text
data into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have
filenames "exampleSonnetN. txt", where N is the number of the sonnet. Specify the
read function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn', readFcn)

fds =

FileDatastore with properties:
Files: {

" ...\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar

" ...\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar

" ...\1bOBF173\5\tp3d708a43\textanalytics-ex73762432\exar

... and 1 more

}

UniformRead: 0
ReadFcn: @extractFileText

AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bag0fWords
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bag =
bagOfWords with properties:

Counts: [
Vocabulary: [
NumWords: O
NumDocuments: 0

]
1x0 string]

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
str = read(fds);
document = tokenizedDocument(str);
bag = addDocument(bag,document);
end

View the updated bag-of-words model.
bag

bag =
bagOfWords with properties:

Counts: [4x276 double]
Vocabulary: [1x276 string]
NumWords: 276
NumDocuments: 4

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the
HTML code as a string.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText (code)

str =
"THE SONNETS

by William Shakespeare"
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Input Arguments

filename — Name of file
string scalar | character vector
Name of the file, specified as a string scalar or character vector.

Data Types: string | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'Pages', [1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
'"UTF-8' | 'IS0-8859-1"' | 'windows-1251" | 'windows-1252" | ...

Character encoding to use, specified as the comma-separated pair consisting of
"Encoding’' and a character vector or a string scalar. The character vector or string
scalar must contain a standard character encoding scheme name such as the following.

'Big5' 'IS0-8859-1' 'windows-847'
'Big5-HKSCS' 'IS0-8859-2' 'windows-949'
'CP949' 'IS0-8859-3"' 'windows-1250"
"EUC-KR' 'IS0-8859-4' 'windows-1251"
"EUC-JP' 'IS0-8859-5' 'windows-1252"
"EUC-TW' 'IS0-8859-6' 'windows-1253"
'GB18030" 'IS0-8859-7' 'windows-1254"
'GB2312' 'IS0-8859-8' 'windows-1255"
'GBK' 'IS0-8859-9' 'windows-1256"
'IBM866 ' 'IS0-8859-11"' 'windows-1257'
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'KOI8-R' 'IS0-8859-13"' 'windows-1258"
'KOI8-U' 'IS0-8859-15" 'US-ASCII'
'Macintosh' ‘UTF-8'
'Shift JIS'

If you do not specify an encoding scheme, then the function performs heuristic auto-
detection for the encoding to use. If these heuristics fail, then you must specify one
explicitly.

This option only applies when the input is a plain text file.

Data Types: char | string

ExtractionMethod — Extraction method
"tree' (default) | 'article' | 'all-text'

Extraction method, specified as the comma-separated pair consisting of
"ExtractionMethod' and one of the following:

Option Description

‘tree' Analyze the DOM tree and text contents,
then extract a block of paragraphs.

'article’ Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except
for scripts and CSS styles.

Password — Password to open PDF file
character vector | string scalar

Password to open PDF file, specified as the comma-separated pair consisting of
"Password' and a character vector or a string scalar. Only has an effect if the input file
is a PDE

Example: 'Password’, 'skrowhtaM'

Data Types: char | string

Pages — Pages to read from PDF file
vector of positive integers
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Pages to read from PDF file, specified as the comma-separated pair consisting of
'Pages' and a vector of positive integers. Only has an effect if the input file is a PDF. The
function, by default, reads all pages from PDF.

Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |

uint32 | uint64
Tips

* Toread text directly from HTML code, use extractHTMLText.

See Also

extractHTMLText | readPDFFormData | tokenizedDocument | writeTextDocument

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2017b
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extractHTMLText

Extract text from HTML

Syntax

str = extractHTMLText (code)
str extractHTMLText(code, 'ExtractionMethod', ex)

Description

str = extractHTMLText (code) parses the HTML code in code and extracts the
article text.

str = extractHTMLText (code, 'ExtractionMethod', ex) also specifies the
extraction method to use.

Examples

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the
HTML code as a string.

code = "<html><body><h1l>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
“THE SONNETS

by William Shakespeare"
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Extract Text from Website

To extract the text data from a web page, first use webread to read the HTML code.
url = "https://www.mathworks.com/help/textanalytics";

code = webread(url);

str = extractHTMLText (code)

str =
'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,

Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can -

Input Arguments

code — HTML code
string scalar | character vector | scalar cell array containing a character vector

HTML code, specified as a string scalar, a character vector, or a scalar cell array
containing a character vector.

Tip
* Toread HTML code from a web page, use webread.
* To extract text from an HTML file, use extractFileText.

Example: "<a href="https://www.mathworks.com'>MathWorks</a>"

Data Types: char | string | cell

ex — Extraction method
"tree' (default) | 'article' | 'all-text'

Extraction method, specified as one of the following:
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Option Description

"tree' Analyze the DOM tree and text contents,
then extract a block of paragraphs.

'article’ Detect article text and extract a block of
paragraphs.

'all-text' Extract all text in the HTML body, except

for scripts and CSS styles.

See Also

extractFileText | readPDFFormData | tokenizedDocument | webread |
writeTextDocument

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2018a
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fastTextWordEmbedding

Pretrained fastText word embedding

Syntax

emb = fastTextWordEmbedding

Description

emb = fastTextWordEmbedding returns a 300-dimensional pretrained word
embedding for 1 million English words.

This function requires the Text Analytics Toolbox™ Model for fastText English 16 Billion
Token Word Embedding support package. If this support package is not installed, the
function provides a download link.

Examples

Download FastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion
Token Word Embedding support package.

Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding
support package is not installed, then the function provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then
click Install. Check that the installation is successful by typing emb =
fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding
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emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

If the required support package is installed, then the function returns a wordEmbedding
object.

Output Arguments

emb — Pretrained word embedding
wordEmbedding object

Pretrained word embedding, returned as a wordEmbedding object.

See Also

ismember | readWordEmbedding | trainWordEmbedding | vec2word | word2vec |
wordEmbedding | writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2018a
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fitlda

Fit latent Dirichlet allocation (LDA) model

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers word probabilities in topics.

Syntax

md1l
md1l
md1l

fitlda(bag,numTopics)
fitlda(counts,numTopics)
fitlda( ___ ,Name,Value)

Description

mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to the bag-
of-words or bag-of-n-grams model bag.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented
by a matrix of frequency counts.

mdl = fitlda( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
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separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text

into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.
bag = bagOfWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0772073 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
[ | iteration | change in | perplexity | concentration | concentration |
[ | (seconds) | log(L) | | | iterations |
| 0 | 0.01 | | 1.215e+03 | 1.000 | 0 |
| 1 | 0.08 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
| 2 | 0.02 | 1.7190e-03 | 1.115e+03 | 1.000 | 0 |
| 3 0.02 | 4.3796e-04 | 1.118e+03 | 1.000 | 0 |
| 4 | 0.08 | 9.4193e-04 | 1.111e+03 | 1.000 | 0 |
| 5| 0.03 | 3.7079%e-04 | 1.108e+03 | 1.000 | 0 |
| 6 | 0.03 | 9.5777e-05 | 1.107e+03 | 1.000 | 0 |
mdl =

ldaModel with properties:

NumTopics: 4
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WordConcentration:
TopicConcentration:
CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

FitInfo:

1

1

[0.2500 0.2500 0.2500 0.2500]
[154x4 double]

[3092x4 double]

[1x3092 string]

[1x1 struct]

Visualize the topics using word clouds.

figure

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);

title("Topic: " + topicIdx)

end
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Fit a LDA model to a collection of documents represented by a word count matrix.

To reproduce the results of this example, set rng to 'default’.

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets. The value
counts(i,j) corresponds to the number of times the jth word of the vocabulary
appears in the ith document.
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load sonnetsCounts.mat
size(counts)

ans = 1x2

154 3092

Fit an LDA model with 10 topics. To disable the verbose output, set 'Verbose' to 0.

numTopics = 10;
mdl = fitlda(counts,numTopics, 'Verbose',0)

mdl =
ldaModel with properties:

NumTopics: 10
WordConcentration: 1
TopicConcentration: 2.5000
CorpusTopicProbabilities: [1x10 double]
DocumentTopicProbabilities: [154x10 double]
TopicWordProbabilities: [3092x10 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of
the first three input documents.

topicMixtures = transform(mdl,counts(1:3,:));

figure

barh(topicMixtures, 'stacked')

xlim([0 11)

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic "+(1l:numTopics), 'Location', 'northeastoutside')
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Document

Topic Mixtures

I Topic 1
I Topic 2
[ JTopic 3

I Topic 9
[ Topic 10

0.2 0.4 0.6 0.8 1
Topic Probability

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0476809 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
[ | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
[ 1| 0.06 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
[ 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.06 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [

1x20 double]
154x20 double]
3092x20 double]
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Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."1);

topicldx = predict(mdl,newDocuments)

topicIdx = 2x1I

19
8

Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)

wordcloud(mdl, topicIdx(1));
title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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Input Arguments

bag — Input model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

numTopics — Number of topics
positive integer
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Number of topics, specified as a positive integer. For an example showing how to choose
the number of topics, see “Choose Number of Topics for LDA Model”.

Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts (i, j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Solver', "avb' specifies to use approximate variational Bayes as the solver.

Solver Options

Solver — Solver for optimization
‘cgs' (default) | 'savb' | "avb' | 'cvbO'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver!
and one of the following:

Stochastic Solver

* 'savb' - Use stochastic approximate variational Bayes [1] [2]. This solver is best
suited for large datasets and can fit a good model in fewer passes of the data.

Batch Solvers
* 'cgs' - Use collapsed Gibbs sampling [3]. This solver can be more accurate at the

cost of taking longer to run. The resume function does not support models fitted with
CGS.
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* 'avb' - Use approximate variational Bayes [4]. This solver typically runs more quickly
than collapsed Gibbs sampling and collapsed variational Bayes, but can be less
accurate.

* 'cvb0O' - Use collapsed variational Bayes, zeroth order [4] [5]. This solver can be
more accurate than approximate variational Bayes at the cost of taking longer to run.

For an example showing how to compare solvers, see “Compare LDA Solvers”.

Example: 'Solver', 'savb'’

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

FitTopicProbabilities — Option for fitting corpus topic probabilities
true (default) | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

=o,(p, P, - Px)

The function fits the Dirichlet prior o on the topic mixtures,

where % is the topic concentration and P>+ Pk are the corpus topic probabilities
which sum to 1.

Example: 'FitTopicProbabilities', false

Data Types: logical

FitTopicConcentration — Option for fitting topic concentration
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
"FitTopicConcentration' and either true or false.

For batch the solvers 'cgs', 'avb', and 'cvb0@', the default for
FitTopicConcentration is true. For the stochastic solver 'savb', the default is
false.
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=oy(p, Py - Px)

The function fits the Dirichlet prior o on the topic mixtures,

where %0 is the topic concentration and P>+ Pk are the corpus topic probabilities
which sum to 1.

Example: 'FitTopicConcentration', false

Data Types: logical

InitialTopicConcentration — Initial estimate of the topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of the topic concentration, specified as the comma-separated pair
consisting of 'InitialTopicConcentration' and a nonnegative scalar. The function
sets the concentration per topic to TopicConcentration/NumTopics. For more
information, see “Latent Dirichlet Allocation” on page 1-96.

Example: 'InitialTopicConcentration',25

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as the comma-separated pair consisting of
'WordConcentration' and a nonnegative scalar. The software sets the Dirichlet prior
on the topics (the word probabilities per topic) to be the symmetric Dirichlet distribution
parameter with the value WordConcentration/numWords, where numWords is the
vocabulary size of the input documents. For more information, see “Latent Dirichlet
Allocation” on page 1-96.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns’, then you might experience a significant reduction
in optimization-execution time.

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
‘IterationLimit' and a positive integer.
This option supports batch solvers only (' cgs', 'avb', or 'cvb0').

Example: 'IterationLimit', 200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair
consisting of 'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and
'MiniBatchLimit', then fitlda uses the argument that results in processing the
fewest observations.

This option supports only the stochastic (' savb') solver.
Example: 'DataPassLimit’', 2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting
of 'MiniBatchLimit' and a positive integer.

If you specify '"MiniBatchLimit' but not 'DataPassLimit’, then fitlda ignores the
default value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and
'DataPassLimit’, then fitlda uses the argument that results in processing the fewest
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observations. The default value is ceil(numDocuments/MiniBatchSize), where
numDocuments is the number of input documents.

This option supports only the stochastic (' savb') solver.
Example: 'MiniBatchLimit',6 200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of '‘MiniBatchLimit'
and a positive integer. The function processes MiniBatchSize documents in each
iteration.

This option supports only the stochastic (' savb') solver.

Example: 'MiniBatchSize',512

LearnRateDecay — Learning rate decay
0.5 (default) | positive scalar less than or equal to 1

Learning rate decay, specified as the comma-separated pair 'LearnRateDecay' and a
positive scalar less than or equal to 1.

_ K
For mini-batch t, the function sets the learning rate to nn=1/1+1) , where K is the
learning rate decay.

If LearnRateDecay is close to 1, then the learning rate decays faster and the model
learns mostly from the earlier mini-batches. If LearnRateDecay is close to 0, then the
learning rate decays slower and the model continues to learn from more mini-batches. For
more information, see “Stochastic Solver” on page 1-99.

This option supports the stochastic solver only (' savb').

Example: 'LearnRateDecay',0.75
Display Options

ValidationData — Validation data
[ 1 (default) | bagOfWords object | bag0fNgrams object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object,
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or a sparse matrix of word counts. If the validation data is a matrix, then the data must
have the same orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

* 0 - Do not display verbose output.
* 1 - Display progress information.

Example: 'Verbose',0

Output Arguments

mdl — Output LDA model
ldaModel object

Output LDA model, returned as an LdaModel object.

Definitions

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers
underlying topics in a collection of documents and infers word probabilities in topics. LDA

models a collection of D documents as topic mixtures 0.0 , over K topics
characterized by vectors of word probabilities Pro-- Pk The model assumes that the

topic mixtures 6.0, , and the topics Prs--+2Px follow a Dirichlet distribution with

concentration parameters & and ﬁ respectively.

The topic mixtures 0.--. 0 are probability vectors of length K, where K is the number of

topics. The entry O is the probability of topic i appearing in the dth document. The topic
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mixtures correspond to the rows of the DocumentTopicProbabilities property of the
ldaModel object.

The topics Proe-2Px are probability vectors of length V, where V is the number of words
in the vocabulary. The entry Piv corresponds to the probability of the vth word of the

vocabulary appearing in the ith topic. The topics Prs-- Pk correspond to the columns of
the TopicWordProbabilities property of the ldaModel object.

Given the topics Pr>--»Px and Dirichlet prior & on the topic mixtures, LDA assumes the
following generative process for a document:

1 - . .
Sample a topic mixture 6 ~ Dirichlet(c) . The random variable ¢ is a probability

vector of length K, where K is the number of topics.

2 For each word in the document:
a

Sample a topic index z ~ Categorical(9) . The random variable z is an integer
from 1 through K, where K is the number of topics.

Sample a word w ~ Categorical(g,) . The random variable w is an integer from
1 through V, where V is the number of words in the vocabulary, and represents
the corresponding word in the vocabulary.

Under this generative process, the joint distribution of a document with words Wiseees Wy ,

with topic mixture 9, and with topic indices Fe AN g given by
N
p@.z.wla,0)=p@|)[] rz,10) p(w, | z,.0),
n=l

where N is the number of words in the document. Summing the joint distribution over z

and then integrating over 6 yields the marginal distribution of a document w:
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pwlog)=[p@|a[ [ p(z, 10)p(w, | z,.9)d6.

“n

The following diagram illustrates the LDA model as a probabilistic graphical model.
Shaded nodes are observed variables, unshaded nodes are latent variables, nodes without
outlines are the model parameters. The arrows highlight dependencies between random
variables and the plates indicate repeated nodes.

Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution.

Given the number of categories K 22 and concentration parameter & , where & isa
vector of positive reals of length K, the probability density function of the Dirichlet
distribution is given by

K

1
- 040(,-—1 ,
pore =g 11
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where B denotes the multivariate Beta function given by

[rcen

1“[ aij

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The
symmetric Dirichlet distribution is characterized by the concentration parameter &,
where all the elements of & are the same.

Stochastic Solver

The stochastic solver processes documents in mini-batches. It updates the per-topic word
probabilities using a weighted sum of the probabilities calculated from each mini-batch,
and the probabilities from all previous mini-batches.

_ K
For mini-batch t, the solver sets the learning rate to nn=1/1+1) , where K is the
learning rate decay.

The function uses the learning rate decay to update ® | the matrix of word probabilities
per topic, by setting

O =(1-n)P"" +nO)®"”,

where OR is the matrix learned from mini-batch t, and oY is the matrix learned from
mini-batches 1 through t-1.

Before learning begins (when t = 0), the function initializes the initial word probabilities

0
per topic @ with random values.
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See Also

bagO0fNgrams | bag0OfWords | fitlsa | ldaModel | Logp | LsaModel | predict |
resume | topkwords | transform | wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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fitlsa

Fit LSA model

Syntax

mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa( __ ,Name,Value)
Description

mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents
components to the bag-of-words or bag-of-n-grams model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents
represented by the matrix of word counts counts.

mdl = fitlsa( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag bagO0fWords (documents)

bag =

bagOfWords with properties:

Counts:
Vocabulary:
NumWords: 3092
NumDocuments: 154

[154x3092 double]
[1x3092 string]

Fit an LSA model with 20 components.

numComponents = 20;

mdl = fitlsa(bag,numComponents)

mdl =
lsaModel with properties:

NumComponents:
ComponentWeights:
DocumentScores:
WordScores:

Vocabulary:
FeatureStrengthExponent:

20

[1x20 doublel]
[154x20 double]
[3092x20 double]
[1x3092 string]
2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

dscores = transform(mdl, newDocuments)

dscores = 2x20

0.1338
0.2547

0.1623
0.5576

0.1680
-0.0095

-0.0541
0.5660

-0.2464
-0.0643

-0.0134
-0.1236

0.2604
-0.0082

-0.0205
0.0522

-0,
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Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts
corresponding to preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1x2

154 3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;

exponent = 4;

mdl = fitlsa(counts,numComponents,
'FeatureStrengthExponent',exponent)

mdl =
lsaModel with properties:

NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 4

Input Arguments

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a

bagO0fNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.
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numComponents — Number of components
positive integer

Number of components, specified as a positive integer. This value must be less than the
number of the input documents, and the vocabulary size of the input documents.

Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i, j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
‘rows ' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns’, then you might experience a significant reduction
in optimization-execution time.
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FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the
feature component strengths for the documentScores, wordScores, and transform
functions.

Example: 'FeatureStrengthExponent',4

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments

mdl — Output LSA model
lsaModel object

Output LSA model, returned as an LsaModel object.

See Also
bagOfNgrams | bag0OfWords | fitlda | ldaModel | LsaModel | transform

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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ismember

Test word is member of word embedding

Syntax

tf = ismember(emb,words)

Description

tf = ismember(emb,words) returns an array containing logical 1 (true) where the
word in words is a member of the word embedding emb. Elsewhere, the array contains
logical 0 (false).

Examples

Test if Word Is Member of Embedding
Test to determine if words are members of a word embedding.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50

Vocabulary: [1x9999 string]

Test if the words "I", "love", and "MATLAB" are in the word embedding.

words = ["I" "love" "MATLAB"]



ismember

words = 1x3 string array

IIIII Illovell IIMATLABII
tf = ismember(emb,words)
tf = 1x3 logical array
0 1 0

Input Arguments

emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.

Data Types: string | char | cell

See Also

readWordEmbedding | trainWordEmbedding | vec2word | word2vec |
wordEmbedding | writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2017b
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join

Combine multiple bag-of-words or bag-of-n-grams models

Syntax

newBag = join(bag)
newBag = join(bag,dim)

Description

newBag = join(bag) combines the elements in the array bag by merging the
frequency counts. The function combines the elements along the first dimension not equal
to 1.

newBag = join(bag,dim) combines the elements in the array bag along the dimension
dim.

Examples

Combine Bag-of-Words Models

Create an array of two bags-of-words models from tokenized documents.

str = [ .

"an example of a short sentence"
"a second short sentence"];
documents = tokenizedDocument(str);
bag(l) = bagO0fWords(documents(1l));

bag(2) bagOfWords (documents(2))

bag =
1x2 bagOfWords array with properties:

Counts
Vocabulary



join

NumWords
NumDocuments

Combine the bag-of-words models using join.
bag = join(bag)

bag =
bag0fWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a directory, then you can import the text
data and create a bag-of-words model in parallel using parfor. If you have Parallel
Computing Toolbox™ installed, then the parfor loop runs in parallel, otherwise, it runs
in serial. Use join to combine an array of bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have
filenames "exampleSonnetN. txt", where N is the number of the sonnet. Get a list of the
files and their locations using dir.

fileLocation = fullfile(matlabroot, 'examples', 'textanalytics', 'exampleSonnet*.txt');
fileInfo = dir(filelLocation)

fileInfo = 5x1 struct array with fields:
name
folder
date
bytes
isdir
datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of
bag-of-words models.
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bag = bag0fWords;

numFiles = numel(fileInfo);
parfor i = 1l:numFiles
f = fileInfo(i);
filename = fullfile(f.folder, f.name);

textData extractFileText(filename);
document tokenizedDocument (textData);
bag(i) = bagO0fWords(document);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 12 workers.

Combine the bag-of-words models using join.

bag join(bag)

bag =
bag0fWords with properties:

Counts: [5x3275 double]
Vocabulary: [1x3275 string]
NumWords: 3275
NumDocuments: 5

Input Arguments

bag — Array of bag-of-words or bag-of-n-grams models
bag0fWords array | bagOfNgrams array

Array of bag-of-words or bag-of-n-grams models, specified as a bag0fWords array or a
bagO0fNgrams array. If bag is a bag0fNgrams array, then each element to be joined must
have the same value for the NgramLengths property.

dim — Dimension along which to join models
positive integer

Dimension along which to join models, specified as a positive integer. If dim is not
specified, then the default is the first dimension with a size that does not equal 1.
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Output Arguments

newBag — Output model
bagO0fWords array | bagOfNgrams array

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of
newBag is the same as the type of bag. newBag has the same data type as the input
model and has a size of 1 along the dimension being joined.

See Also
bagOfNgrams | bagOfWords

Introduced in R2018a
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joinWords

Convert documents to string by joining words

Syntax

newStr
newStr

joinWords (documents)
joinWords (documents,delim)

Description

newStr = joinWords(documents) converts a tokenizedDocument array to a string
array by joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim
instead of a space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a space.
documents = tokenizedDocument ([

"an example of a short sentence"

"a second short sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

str = joinWords(documents)
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str = 2x1 string array
"an example of a short sentence"
"a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an
underscore.

str

joinWords(documents," ")

str = 2x1 string array
"an_example of a short sentence"
"a second short_sentence"

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
string scalar | character vector | scalar cell array

Delimiter to join words, specified as a string scalar, character vector, or scalar cell array
containing a character vector.

Example:
Example: ' '
Example: {' '}

Data Types: char | string | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors
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Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also

context | doc2cell | doclength | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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IdaModel

Latent Dirichlet allocation (LDA) model

Description

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers word probabilities in topics. If the model
was fit using a bag-of-n-grams model, then the software treats the n-grams as individual
words.

Creation

Create an LDA model using the fitlda function.

Properties

NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration, specified as a positive scalar. The function sets the concentration per
topic to TopicConcentration/NumTopics. For more information, see “Latent Dirichlet
Allocation” on page 1-130.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as a nonnegative scalar. The software sets the
concentration per word to WordConcentration/numWords, where numWords is the
vocabulary size of the input documents. For more information, see “Latent Dirichlet
Allocation” on page 1-130.
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CorpusTopicProbabilities — Topic probabilities of input document set
vector

Topic probabilities of input document set, specified as a vector. The corpus topic
probabilities of an LDA model are the probabilities of observing each topic in the entire
data set used to fit the LDA model. CorpusTopicProbabilities is a 1-by-K vector
where K is the number of topics. The kth entry of CorpusTopicProbabilities
corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic
probabilities of an LDA model are the probabilities of observing each topic in each
document used to fit the LDA model. DocumentTopicProbabilities is a D-by-K matrix
where D is the number of documents used to fit the LDA model, and K is the number of
topics. The (d,k)th entry of DocumentTopicProbabilities corresponds to the
probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

The order of the rows in DocumentTopicProbabilities corresponds to the order of
the documents in the training data.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an LDA
model are the probabilities of observing each word in each topic of the LDA model.
TopicWordProbabilities is a V-by-K matrix, where V is the number of words in
Vocabulary and K is the number of topics. The (v,k)th entry of
TopicWordProbabilities corresponds to the probability of observing word v in topic
k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

The order of the rows in TopicWordProbabilities corresponds to the order of the
words in Vocabulary.
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FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following
fields:

TerminationCode - Status of optimization upon exit

* 0 - Iteration limit reached.

* 1 - Tolerance on log-likelihood satisfied.

TerminationStatus - Explanation of the returned termination code
NumIterations - Number of iterations performed

NegativeloglLikelihood - Negative log-likelihood for the data passed to fitlda
Perplexity - Perplexity for the data passed to fitlda

Solver - Name of the solver used

History - Struct holding the optimization history

StochasticInfo - Struct holding information for stochastic solvers

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.

Data Types: string

Object Functions

logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model

topkwords Most important words in bag-of-words model or LDA topic
transform  Transform documents into lower-dimensional space
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model
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Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed

versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonn
str = extractFil
textData = split

documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.

bag = bag0fWords
bag =
bagOfWords wit
Counts:
Vocabulary:
NumWords:
NumDocuments:

etsPreprocessed.txt";
eText (filename);
(str,newline);

(documents)

h properties:

[154x3092 doublel]
[1x3092 string]
3092

154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag

Initial topic assignments sampled in 0.

,numTopics)

0772073 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | [ | iterations |
| 0 | 0.01 | | 1.215e+03 | 1.000 | 0 |
| 1 | 0.08 | 1.0482e-02 | 1.128e+03 | 1.000 | 0 |
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| 2 | 0.02 | 1.7190e-03 | 1
| 3 0.02 | 4.3796e-04 | 1
| 4 | 0.08 | 9.4193e-04 | 1
| 5 | 0.03 | 3.7079e-04 | 1
| 6 | 0.03 | 9.5777e-05 | 1

.115e+03
.118e+03
.111e+03
.108e+03
.107e+03

1.000
1.000
1.000
1.000
1.000

[ocNoNoNOoNO]

mdl =
ldaModel with properties:

NumTopics: 4
WordConcentration: 1
TopicConcentration: 1

CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]

DocumentTopicProbabilities: [154x4 double]
TopicWordProbabilities: [3092x4 double]
Vocabulary: [1x3092 string]

FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure

for topicIdx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicIdx)

end
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Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.
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filename = "sonnetsPreprocessed.txt";
= extractFileText(filename);
textData = split(str,newline);

str

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag = bag0fWords(documents);

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments

sampled in 0.

0747008 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.09 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.08 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.08 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.08 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:

NumTopics:

0

WordConcentration:

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

2

1

TopicConcentration: 5
[

[

[

[

FitInfo: [

Find the top 20 words of the first topic.

1x20 double]
154x20 double]
3092x20 double]
1x3092 string]
1x1 struct]
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k = 20;
topicldx = 1;
T = topkwords(mdl,k,topicIdx)

T=20x2 table

Word Score
"eyes" 0.11155
"beauty" 0.05777
"hath" 0.055778
"still" 0.049801
"true" 0.043825
"mine" 0.033865
"find" 0.031873
"black" 0.025897
"look" 0.023905
"tis" 0.023905
"kind" 0.021913
"seen" 0.021913
"found" 0.017929
"sin" 0.015937
"three" 0.013945
"golden" 0.0099608

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
T = topkwords(mdl,k,topicIdx, 'Scaling', 'inversemean')

T=20x2 table

Word Score
"eyes" 1.2718
"beauty" 0.59022
"hath" 0.5692
"still" 0.50269
"true" 0.43719
"mine" 0.32764
"find" 0.32544
"black" 0.25931
"tis" 0.23755
"look" 0.22519
"kind" 0.21594
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"seen" 0.21594
"found" 0.17326
"sin" 0.15223
"three" 0.13143
"golden" 0.090698

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(T.Word,T.Score);

find
beauty -

mine ~ - seen
'hs blaCk
fnundey kind
St 1 hath

look

three

sin
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Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents
used to fit an LDA model.

To reproduce the results, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0OfWords.
bag = bag0fWords(documents);
Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0773174 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.03 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.10 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.09 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.11 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.10 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.12 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
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NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

View the topic probabilities of the first document in the training data.

topicMixtures = mdl.DocumentTopicProbabilities;
figure

bar(topicMixtures(1,:))

title("Document 1 Topic Probabilities")
xlabel("Topic Index")

ylabel("Probability")
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Document 1 Topic Probabilities
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Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0476809 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
[ | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
[ 1| 0.06 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
[ 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.06 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [

1x20 double]
154x20 double]
3092x20 double]
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Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."1);

topicldx = predict(mdl,newDocuments)

topicIdx = 2x1I

19
8

Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)

wordcloud(mdl, topicIdx(1));
title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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Definitions

Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers
underlying topics in a collection of documents and infers word probabilities in topics. LDA

models a collection of D documents as topic mixtures O 6p , over K topics

characterized by vectors of word probabilities Prs--Px  The model assumes that the

0

topic mixtures 0.0, , and the topics Pro--- Pk follow a Dirichlet distribution with

concentration parameters & and ﬂ respectively.

The topic mixtures 6.0, are probability vectors of length K, where K is the number of

topics. The entry O is the probability of topic i appearing in the dth document. The topic
mixtures correspond to the rows of the DocumentTopicProbabilities property of the
ldaModel object.

The topics Prs--Px are probability vectors of length V, where V is the number of words
in the vocabulary. The entry Puv corresponds to the probability of the vth word of the

vocabulary appearing in the ith topic. The topics Prs-- Pk correspond to the columns of
the TopicWordProbabilities property of the LdaModel object.

Given the topics Prs--+2Px and Dirichlet prior & on the topic mixtures, LDA assumes the
following generative process for a document:

1 - o
Sample a topic mixture 6 ~ Dirichlet(c) . The random variable ¢ is a probability

vector of length K, where K is the number of topics.
2 For each word in the document:

Sample a topic index z ~ Categorical(8) . The random variable z is an integer
from 1 through K, where K is the number of topics.
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b .
Sample a word w ~ Categorical(g.) . The random variable w is an integer from
1 through V, where V is the number of words in the vocabulary, and represents
the corresponding word in the vocabulary.

Under this generative process, the joint distribution of a document with words Wis oo Wy ,

with topic mixture 9, and with topic indices Fe AN g given by

N
p@.z.wla,0)=p@|)]] pz,10) p(w, | z,.0),
n=l
where N is the number of words in the document. Summing the joint distribution over z

and then integrating over 6 yields the marginal distribution of a document w:

pwle.@)= [ p@led[[ X p(z,16) p(w, | z,.0)d6.

n=l z,

The following diagram illustrates the LDA model as a probabilistic graphical model.
Shaded nodes are observed variables, unshaded nodes are latent variables, nodes without
outlines are the model parameters. The arrows highlight dependencies between random
variables and the plates indicate repeated nodes.
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|
e—x(0)—(=

b

Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution.

Given the number of categories K 22 and concentration parameter & , where & isa
vector of positive reals of length K, the probability density function of the Dirichlet
distribution is given by

1 K
p@a)y=——rI]1o"",
B(o) H

where B denotes the multivariate Beta function given by

| J ACA)

B(a) ==

=
' Yo,
i=l
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A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The
symmetric Dirichlet distribution is characterized by the concentration parameter &,
where all the elements of & are the same.

See Also

bagOfWords | fitlda | logp | LsaModel | predict | resume | topkwords |
transform | wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”

“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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Latent semantic analysis (LSA) model

Description

A latent semantic analysis (LSA) model discovers relationships between documents and
the words that they contain. If the model was fit using a bag-of-n-grams model, then the
software treats the n-grams as individual words.

Creation

Create an LSA model using the fitlsa function.

Properties

NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is
the dimensionality of the result vectors. Changing the value of NumComponents changes
the length of the resulting vectors, without influencing the initial values. You can only set
NumComponents to be less than or equal to the number of components used to fit the LSA
model.

Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and
WordScores properties, and the transform function, specified as a nonnegative scalar.
The LSA model scales the properties by their singular values (feature strengths), with an
exponent of FeatureStrengthExponent/2.

Example: 2.5



IsaModel

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA
model are the singular values, squared. ComponentWeights is a 1-by-NumComponents
vector where the jth entry corresponds to the weight of component j. The components are
ordered by decreasing weights. You can use the weights to estimate the importance of
components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA
model are the score vectors in lower dimensional space of each document used to fit the
LSA model. DocumentScores is a D-by-NumComponents matrix where D is the number
of documents used to fit the LSA model. The (i j)th entry of DocumentScores
corresponds to the score of component j in document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are
the scores of each word in each component of the LSA model. WordScores is a V-by-
NumComponents matrix where V is the number of words in Vocabulary. The (vj)th entry
of WordScores corresponds to the score of word v in component j.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string

Object Functions

transform Transform documents into lower-dimensional space

Examples
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Fit LSA Model
Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag bagOfWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
lsaModel with properties:

NumComponents: 20
ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
WordScores: [3092x20 double]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.
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newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

dscores = transform(mdl,newDocuments)

dscores = 2x20

0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604
0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082

Calculate Document Similarity

Create a bag-of-words model from some text data.

str = [

"I enjoy ham, eggs and bacon for breakfast."

"I sometimes skip breakfast."

"I eat eggs and ham for dinner."

1;
documents = tokenizedDocument(str);
bag = bag0fWords(documents);

Fit an LSA model with two components. Set the feature strength exponent to 0.5.

numComponents = 2;

exponent = 0.5;

mdl = fitlsa(bag,numComponents,
'FeatureStrengthExponent',exponent)

mdl =
lsaModel with properties:

NumComponents: 2
ComponentWeights: [16.2268 4.0000]
DocumentScores: [3x2 double]
WordScores: [14x2 double]
Vocabulary: [1x14 string]
FeatureStrengthExponent: 0.5000

-0.0205
0.0522

Calculate the cosine distance between the documents score vectors using pdist. View
the distances in a matrix D using squareform. D(1i, j) denotes the distance between

document i and j.
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dscores = mdl.DocumentScores;
distances = pdist(dscores, 'cosine');
D = squareform(distances)

D = 3x3
0 0.6244 0.1489
0.6244 0 1.1670
0.1489 1.1670 0

Visualize the similarity between documents by plotting the document score vectors in a
compass plot.

figure

compass(dscores(1,1),dscores(1,2),"'red")

hold on

compass(dscores(2,1),dscores(2,2), 'green')
compass(dscores(3,1),dscores(3,2), 'blue")

hold off

title("Document Scores")

legend(["Document 1" "Document 2" "Document 3"], 'Location', 'bestoutside')
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Document Scores

5 45 Document 1
120 B0 Document 2
Document 3
1
150 30
0.5
180 = 0
210 330
240 300
270

. “Analyze Text Data Using Topic Models”

. “Prepare Text Data for Analysis”
. “Extract Text Data from Files”
See Also

bagO0fWords | ldaModel | LsaModel

Topics
“Analyze Text Data Using Topic Models”
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“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b

1-140



logp

logp

Document log-probabilities and goodness of fit of LDA model

Syntax

logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl, counts)
logProb = logp(ldaMdl,bag)
[LogProb,ppl] = logp(__ )

= logp(___ ,Name,Value)
Description

logProb = logp(ldaMdl,documents) returns the log-probabilities of documents
under the LDA model 1daMd1.

logProb = logp(ldaMdl, counts) returns the log-probabilities of the documents
represented by the matrix of word counts counts.

logProb = logp(ldaMdl,bag) returns the log-probabilities of the documents
represented by a bag-of-words or bag-of-n-grams model.

[LogProb,ppl] = logp( ) returns the perplexity computed from the log-
probabilities.

= logp( ,Name, Value) specifies additional options using one or more name-
value pair arguments.

Examples

Calculate Document Log-Probabilities

To reproduce the results in this example, set rng to 'default’.
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rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bagO0fWords (documents)

bag0fWords with properties:

bag =

bag =
Counts:
Vocabulary:
NumWords:
NumDocuments:

Fit an LDA model with 20 topics.

numTopics = 20;

mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.

3092
154

[154x3092 doublel
[1x3092 string]

132474 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.14 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.07 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
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mdl =
ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents and show them in a
histogram.

logProbabilities = logp(mdl,documents);
figure

histogram(logProbabilities)

xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")
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Document Log-Probabilities

40 .

Frequency

-550 =500 -450 -400 -350
Log Probability

Identify the three documents with the lowest log-probability. A low log-probability may
suggest that the document may be an outlier.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3x1
146

19
65

documents(idx(1:3))
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3x1 tokenizedDocument:

(1,1) 76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dos
(2,1) 76 tokens: devouring time blunt thou lions paws make earth devour own sweet broo
(3,1) 73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways po

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0673149 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.03 | | 1.159e+03 | 5.000 | 0 |
| 1| 0.08 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.11 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.07 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.08 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.07 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.07 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
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NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500
samples for each document.

numSamples = 500;
logProbabilities = logp(mdl, counts,
"NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure

histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")

title("Document Log-Probabilities")
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Frequency

Document Log-Probabilities

40 .

-550 =500 -450 -400 -350
Log Probability

Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3x1
146

19
65
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Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-
out test set of documents.

To reproduce the results, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Set aside 10% of the documents at random for testing.

numDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag bagO0fWords (documentsTrain)

bag =
bagOfWords with properties:

Counts: [139x2909 double]
Vocabulary: [1x2909 string]
NumWords: 2909
NumDocuments: 139

Fit an LDA model with 20 topics to the bag-of-words model.

numTopics = 20;
mdll = fitlda(bag,numTopics);

Initial topic assignments sampled in 0.108331 seconds.
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| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.05 | | 1.137e+03 | 5.000 | 0 |
| 1 | 0.10 | 5.5571e-02 | 7.850e+02 | 5.000 | 0 |
| 2 | 0.09 | 5.2541e-03 | 7.582e+02 | 5.000 | 0 |
| 3 0.07 | 3.9933e-03 | 7.384e+02 | 5.000 | 0 |
| 4 | 0.08 | 7.2248e-04 | 7.349e+02 | 5.000 | 0 |
| 5| 0.08 | 3.8814e-03 | 7.164e+02 | 5.000 | 0 |
| 6 | 0.15 | 2.1087e-03 | 7.065e+02 | 5.000 | 0 |
| 7 | 0.08 | 2.0816e-03 | 6.970e+02 | 5.000 | 0 |
| 8 | 0.09 | 1.9510e-03 | 6.882e+02 | 5.000 | 0 |
| 9 | 0.08 | 1.4162e-03 | 6.818e+02 | 5.000 | 0 |
| 10 | 0.07 | 1.4113e-03 | 6.756e+02 | 5.000 | 0 |
| 11 | 0.12 | 1.0378e-03 | 6.710e+02 | 13.255 | 23 |
| 12 | 0.09 | 1.1699%e-02 | 7.248e+02 | 16.536 | 20 |
| 13 | 0.07 | 2.5441e-03 | 7.371e+02 | 17.269 | 13 |
| 14 | 0.10 | 9.7803e-04 | 7.418e+02 | 18.155 | 14 |
| 15 | 0.08 | 9.8659%e-04 | 7.467e+02 | 18.650 | 11 |
| 16 | 0.07 | 1.9437e-03 | 7.564e+02 | 19.555 | 14 |
| 17 | 0.07 | 1.0115e-03 | 7.513e+02 | 18.746 | 13 |
| 18 | 0.08 | 1.3317e-03 | 7.580e+02 | 19.781 | 15 |
| 19 | 0.07 | 3.1099%e-04 | 7.596e+02 | 19.851 | 5 |
| 20 | 0.07 | 8.9869e-04 | 7.550e+02 | 19.181 | 12 |
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 21 | 0.07 | 5.1822e-04 | 7.525e+02 | 19.364 | 7 |
| 22 | 0.10 | 4.5942e-04 | 7.502e+02 | 19.278 | 5 |
| 23 | 0.11 | 1.0923e-04 | 7.496e+02 | 19.250 | 4 |
| 24 | 0.08 | 4.2040e-04 | 7.476e+02 | 19.079 | 6 |
| 25 | 0.07 | 8.8342e-04 | 7.432e+02 | 18.516 | 11 |
| 26 | 0.08 | 9.9164e-05 | 7.427e+02 | 18.606 | 5 |

Compute the perplexity of the held-out test set.

[~,ppll] = logp(mdll,documentsTest)

ppll = 781.5692

Fit an LDA model with 40 topics to the bag-of-words model.
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numTopics =
mdl2 = fitlda(bag,numTopics);

40;

Initial topic assignments

sampled in 0.

0469017 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.068e+03 | 10.000 | 0 |
| 1 | 0.11 | 8.7406e-02 | 6.095e+02 | 10.000 | 0 |
| 2 | 0.10 | 7.1007e-03 | 5.826e+02 | 10.000 | 0 |
| 3 0.10 | 4.1709e-03 | 5.674e+02 | 10.000 | 0 |
| 4 | 0.10 | 4.7632e-03 | 5.506e+02 | 10.000 | 0 |
| 5 | 0.09 | 2.5930e-03 | 5.417e+02 | 10.000 | 0 |
| 6 | 0.10 | 2.8340e-03 | 5.321e+02 | 10.000 | 0 |
| 7 | 0.10 | 4.4464e-04 | 5.336e+02 | 10.000 | 0 |
| 8 | 0.09 | 1.3042e-03 | 5.293e+02 | 10.000 | 0 |
| 9 | 0.10 | 3.2357e-03 | 5.187e+02 | 10.000 | 0 |
| 10 | 0.11 | 2.4565e-04 | 5.179e+02 | 10.000 | 0 |
| 11 | 0.12 | 2.9851e-03 | 5.083e+02 | 16.621 | 17 |
| 12 | 0.10 | 8.3119e-03 | 5.356e+02 | 18.276 | 13 |
| 13 | 0.10 | 4.3005e-03 | 5.503e+02 | 19.955 | 13 |
| 14 | 0.11 | 1.2658e-03 | 5.547e+02 | 20.172 | 6 |
| 15 | 0.15 | 1.1721e-03 | 5.589%e+02 | 20.424 | 7 |
| 16 | 0.12 | 9.2352e-04 | 5.621e+02 | 20.961 | 9 |
| 17 | 0.11 | 1.9529e-03 | 5.691e+02 | 21.906 | 11 |
| 18 | 0.11 | 9.4417e-04 | 5.726e+02 | 22.304 | 8 |
| 19 | 0.14 | 3.6839%e-04 | 5.739%e+02 | 22.569 | 7 |
| 20 | 0.12 | 3.7166e-04 | 5.725e+02 | 22.342 | 6 |
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 21 | 0.13 | 5.8456e-04 | 5.704e+02 | 22.095 | 6 |
| 22 | 0.11 | 8.8278e-04 | 5.672e+02 | 21.742 | 7 |
| 23 | 0.12 | 4.1349e-04 | 5.687e+02 | 22.145 | 8 |
| 24 | 0.11 | 2.4727e-03 | 5.599%e+02 | 21.493 | 9 |
| 25 | 0.10 | 6.1150e-04 | 5.577e+02 | 21.321 | 5 |
| 26 | 0.10 | 4.3317e-04 | 5.593e+02 | 21.625 | 7 |
| 27 | 0.11 | 3.9528e-04 | 5.607e+02 | 21.798 | 6 |
| 28 | 0.12 | 5.4531e-04 | 5.626e+02 | 21.823 | 4 |
| 29 | 0.11 | 2.5229e-04 | 5.635e+02 | 21.842 | 4 |
| 30 | 0.10 | 9.1549e-04 | 5.668e+02 | 21.834 | 4 |
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| 31 | 0.11 | 1.9169e-03 | 5.600e+02 | 21.630 |
| 32 | 0.11 | 1.8207e-04 | 5.593e+02 | 21.565 |
| 33 | 0.11 | 9.4024e-04 | 5.627e+02 | 21.601 |
| 34 | 0.10 | 6.0374e-04 | 5.605e+02 | 21.538 |
| 35 | 0.12 | 5.7683e-04 | 5.626e+02 | 21.898 |
| 36 | 0.11 | 1.0780e-03 | 5.587e+02 | 21.485 |
| 37 | 0.12 | 3.6849e-05 | 5.589e+02 | 21.460 |

OO WU

Compute the perplexity of the held-out test set.
[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6732

The perplexity is lower for the first model which suggests that this model may be better
fit to the held-out test data.

Input Arguments

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a

bagO0fNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'‘DocumentsIn' to be 'rows’, then the value counts(i, j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(1i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'NumSamples',b 500 specifies to draw 500 samples for each document

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns', then you might experience a significant reduction
in optimization-execution time.

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair
consisting of 'NumSamples' and a positive integer.
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Example: 'NumSamples', 500

Output Arguments

logProb — Log-probabilities
numeric vector

Log-probabilities of the documents under the LDA model, returned as a numeric vector.

ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive
scalar.

Algorithms

The logp uses the iterated pseudo-count method described in

References

[1] Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov, and David Mimno. "Evaluation
methods for topic models." In Proceedings of the 26th annual international
conference on machine learning, pp. 1105-1112. ACM, 2009. Harvard

See Also
bagO0fWords | fitlda | ldaModel | predict | transform | wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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lower

Convert documents to lowercase

Syntax

newDocuments = lower(documents)

Description

newDocuments = lower(documents) converts each uppercase character in the input
documents to the corresponding lowercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.

documents = tokenizedDocument ([
"An Example of a Short Sentence"
"A Second Short Sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: An Example of a Short Sentence
(2,1) 4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments =
2x1 tokenizedDocument:
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(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

bagO0fWords | docfun | normalizeWords | regexprep | replace |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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normalizeWords

Reduce words to common stems using the Porter stemmer

normalizeWords uses the Porter stemmer to group different forms of English words by
reducing them to a common stem. This common stem is not necessarily a proper English
word.

Syntax

newDocuments = normalizeWords (documents)
newWords = normalizeWords(words)

Description

newDocuments = normalizeWords(documents) stems each word in documents
using the Porter stemmer.

newWords = normalizeWords (words) stems each word in words.

Examples

Stem Words in Document Array

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
"a strongly worded collection of words"
"another collection of words"]);
newDocuments = normalizeWords (documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: a strongli word collect of word
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(2,1) 4 tokens: anoth collect of word

Stem Words in String Array

Stem the words in a string array using the Porter stemmer. Each element of the string
array must be a single word.

words = ["a" "strongly" "worded" "collection" "of" "words"];
newWords = normalizeWords(words)

newWords = 1Ix6 string array

a "strongli" "word" "collect" "of" "word"

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.

Data Types: string | char | cell

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.
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newWords — Output words
string array | character vector | cell array of character vectors

Output words, returned as a string array, character vector, or cell array of character
vectors. words and newWords have the same data type.

See Also

bagOfWords | Llower | regexprep | replace | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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plus+

Append documents

Syntax

newDocuments = documentsl + documents?
newDocuments plus(documentsl,documents?2)

Description

newDocuments = documentsl + documents2 appends the documents in
documents?2 to the documents in documentsl.

newDocuments = plus(documentsl,documents2) is equivalent to newDocuments =
documentsl + documents2.

Examples

Append Documents

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create arrays containing the first 5 and second 5 sonnets.

documentsl = documents(1:5)
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documentsl =
5x1 tokenizedDocument:

) 70 tokens: fairest creatures desire increase thereby beautys rose might never die
) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys fie
) 65 tokens: look thy glass tell face thou viewest time face form another whose fre
) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys le
) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants

e

(1,
(2'
(3'
(4,
(5'

documents2 = documents(6:10)

documents2 =
5x1 tokenizedDocument:

(1,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make
(2,1) 64 tokens: lo orient gracious light 1ifts up burning head eye doth homage newapp:e
(3,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights
(4,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issuele
(5,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt -

Append the second 5 sonnets to the first 5 sonnets.
newDocuments = documentsl + documents2

newDocuments =
5x1 tokenizedDocument:

(1,1) 138 tokens: fairest creatures desire increase thereby beautys rose might never d:
(2,1) 135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys f:
(3,1) 135 tokens: look thy glass tell face thou viewest time face form another whose f
(4,1) 141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys 1
(5,1) 130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrant:

Input Arguments

documentsl — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and
documents2 must be the same size.
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documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documentsl and
documents2 must be the same size.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

tokenizedDocument

Introduced in R2017b
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predict

Predict top LDA topics of documents

Syntax

topicIdx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,bag)
topicIdx = predict(ldaMdl, counts)
[topicIdx,score] = predict( )
= predict(___ ,Name,Value)
Description

topicIdx = predict(ldaMdl, documents) returns the LDA topic indices with the
largest probabilities for documents based on the LDA model 1daMd1.

topicIdx = predict(ldaMdl,bag) returns the LDA topic indices with the largest
probabilities for the documents represented by a bag-of-words or bag-of-n-grams model.

topicIdx = predict(ldaMdl, counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict( ) also returns a matrix of posterior probabilities
score.

= predict( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default’.
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rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.

bagO0fWords (documents)

bag0fWords with properties:

bag =

bag =
Counts:
Vocabulary:
NumWords:
NumDocuments:

Fit an LDA model with 20 topics.

numTopics = 20;

mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.

3092
154

[154x3092 doublel
[1x3092 string]

0476809 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.06 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.06 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.06 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
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mdl =
ldaModel with properties:

NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [1x20 double]
DocumentTopicProbabilities: [154x20 double]
TopicWordProbabilities: [3092x20 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."]);

topicIdx = predict(mdl,newDocuments)

topicIdx = 2x1I

19
8

Visualize the predicted topics using word clouds.

figure

subplot(1,2,1)

wordcloud(mdl, topicIdx(1));
title("Topic " + topicIdx(1l))
subplot(1,2,2)

wordcloud(mdl, topicIdx(2));
title("Topic " + topicIdx(2))
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Predict Top LDA Topics of Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a

corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1Ix2

154 3092
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Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to

'default’.

rng('default"')
numTopics = 20;

mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.

0904534 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
[ | iteration | change in | perplexity | concentration | concentration |
[ | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.08 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.08 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.08 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.08 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.06 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:

FitInfo:

NumTopics:

ldaModel with properties:

0

WordConcentration:

2
1
TopicConcentration: 5
[
[
[
[
[

1x20 double]
154x20 double]
3092x20 double]
1x3092 string]
1x1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx

topicIdx
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14

Calculate Topic Prediction Scores

To reproduce the results in this example, set rng to 'default’.

rng('default"')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag bagO0fWords (documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0473846 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations
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| 0 | 0.04 | | 1.159e+03
| 1| 0.07 | 5.4884e-02 | 8.028e+02
| 2 | 0.09 | 4.7400e-03 | 7.778e+02
| 3 0.06 | 3.4597e-03 | 7.602e+02
| 4 | 0.07 | 3.4662e-03 | 7.430e+02
| 5 | 0.07 | 2.9259e-03 | 7.288e+02
| 6 | 0.07 | 6.4180e-05 | 7.291e+02

(G0, IE, G, 0, O, 0,

.000
.000
.000
.000
.000
.000
.000

[oNoNoNoNoNoNO]

mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [
Vocabulary: [
FitInfo: [

1x20 double]
154x20 double]
3092x20 double]
1x3092 string]
1x1 struct]

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smel

iterationLimit = 200;
[topicIdx,scores] = predict(mdl, newDocument,
'TterationLimit',iterationLimit)

topicIdx = 19
scores = 1x20

0.0250 0.0250 0.0250 0.0250 0.1250

View the prediction scores in a bar chart.

figure

bar(scores)

title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")

0.0250

0.0250

0.0250

0.
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Score

LDA Topic Prediction Scores
D25 T T T T T T T T

0.2

0.1

0.05

0 2 4 6 8 0 12 14 16 18 20
Topic Index

Input Arguments

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a tokenizedDocument, then it must be
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a column vector. If documents is a string array or a cell array of character vectors, then
it must be a row of the words of a single document.

Tip To ensure that the function does not discard useful information, you must first
preprocess the input documents using the same steps used to preprocess the documents
used to train the model.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts(i, j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'IterationLimit', 200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.
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* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns’, then you might experience a significant reduction
in optimization-execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'"IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

Output Arguments

topicIdx — Predicted topic indices
vector of numeric indices

Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input
documents and K is the number of topics in the LDA model. score(1i,j) is the
probability that topic j appears in document i. Each row of score sums to one.
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See Also
bagOfWords | fitlda | ldaModel | logp | transform | wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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readPDFFormData

Read data from PDF forms

Syntax

data
data

readPDFFormData(filename)
readPDFFormData(filename, 'Password', password)

Description

data = readPDFFormData(filename) reads the data from a PDF form into a struct.

data = readPDFFormData(filename, 'Password', password) specifies the
password for opening the PDF form.

Examples

Read Data from PDF Form

Read the data from the form fields in weatherReportForml. pdf using
readPDFFormData. The function returns a struct containing the data from the PDF form
fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:
event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

Read Data From Multiple Forms

Read the data from the form fields in multiple files using a file datastore.
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Create a file datastore for the weather reports forms. The forms are named
"weatherReportFormN.pdf", where N is the number of the form.. Specify the filename
using the wildcard "*" to find all filenames of this structure. To specify the read function
to be readPDFFormData, input this function to fileDatastore using a function handle.

fds = fileDatastore("weatherReportForm*.pdf", 'ReadFcn',@readPDFFormData)

fds =
FileDatastore with properties:
Files: {

UniformRead: 0

...\1bOBF173\8\tpd67a570d\textanalytics-ex39762425\wea’
...\1bOBF173\8\tpd67a570d\textanalytics-ex39762425\wea’
..\1bOBF173\8\tpd67a570d\textanalytics-ex39762425\wea:
. and 1 more

}..

ReadFcn: @readPDFFormData

AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each PDF form.

data = [];
while hasdata(fds)
textData = read(fds);
data = [data; textData];
end
data

data = 4x1 struct array with fields:

event type
event narrative

Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

readPDFFormData supports AcroForm PDF files (interactive forms) only.
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Data Types: string | char

password — Password to open PDF file
string scalar | character vector

Password to open PDF file, specified as a character vector or a string scalar.
Example: 'skroWhtaM'
Data Types: string | char

Output Arguments

data — Output struct
struct

Output struct. The fields of data correspond to the names of the form fields in the PDE. If
the form field names are not valid struct field names, then the function automatically edits
them to construct valid names.

See Also

extractFileText

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification’

J

Introduced in R2018a
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readWordEmbedding

Read word embedding from file

Syntax

emb = readWordEmbedding(filename)

Description

emb = readWordEmbedding(filename) reads the pretrained word embedding stored
in text file or zip file filename. The input file must be a text file with UTF-8 encoding in
either the word2vec or GloVe text embedding format, or a zip file containing a text file of
this format.

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb, "king");
man = word2vec(emb, "man");
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woman = word2vec(emb, "woman");
word = vec2word(emb,king - man + woman)

word =
“queen"

Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

Output Arguments

emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

See Also

fastTextWordEmbedding | ismember | trainWordEmbedding | vec2word |
word2vec | wordEmbedding | writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2017b
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regexprep
Replace text in words of documents using regular expression

Text Analytics Toolbox provides functions for common text preprocessing steps. For
example, to remove punctuation and symbol characters, use erasePunctuation or to
remove stem words using the Porter stemmer, use normalizeWords. For more
information, see “Text Data Preparation”.

Syntax

newDocuments = regexprep(documents,expression, replace)

Description

newDocuments = regexprep(documents,expression, replace) replaces all
occurrences of the regular expression expression in the words of documents with the
text in replace.

The function matches each word independently. The match does not have to span the
whole word.

Examples

Update Text in Words

Replace words that begin with "s", end "e", and have at least one character between
them. To match whole words, use "~" to match the start of a word and "$" to match the
end of the word.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:
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(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

expression = "“s(\w+)es$";
replace = "thing";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short thing
(2,1) 4 tokens: a second short thing

If you do not use "~" and "$", then you can match substrings of the words. Replace all
vowels with " ",

expression = "[aeioul";
replace = "\ ";
newDocuments = regexprep(documents,expression, replace)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: n x mpl f sh rt s nt nc_

(2,1) 4 tokens: s c. nd sh rt s nt nc_

Include Captured Tokens in Word Replacement
Replace variations of the word "walk" by capturing the letters that follow "walk".
documents = tokenizedDocument ([

"T walk"

"they walked"
"we are walking"])

documents =
3x1 tokenizedDocument:

(1,1) 2 tokens: I walk
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(2,1) 2 tokens: they walked
(3,1) 3 tokens: we are walking

expression = "walk(\w*)";
replace = "ascend$l";
newDocuments = regexprep(documents,expression, replace)

newDocuments =
3x1 tokenizedDocument:

(1,1) 2 tokens: I ascend

(2,1) 2 tokens: they ascended
(3,1) 3 tokens: we are ascending

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.
Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.
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Metacharacter |Description Example
Any single character, including white | ' . .ain' matches sequences of five
space consecutive characters that end with

‘ain'.

[cicoC5] Any character contained within the |'[rp.]ain' matches 'rain' or 'pain'
square brackets. The following or '.ain'.
characters are treated literally: $
| . * + ?and - when not used to
indicate a range.

[~cicyc3] Any character not contained within |'[~*rp]ain' matches all four-letter
the square brackets. The following |sequences that end in 'ain', except
characters are treated literally: $ 'rain' and 'pain' and '*ain'. For
| . * + ?and - when not used to |example, it matches 'gain’, 'lain’, or
indicate a range. 'vain'.

[ci-¢o] Any character in the range of ¢; '[A-G] ' matches a single character in
through c, the range of A through G.

\w Any alphabetic, numeric, or "\w*' identifies a word.
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z 0-9]

\W Any character that is not alphabetic, |'\W*' identifies a term that is not a
numeric, or underscore. For English |word.
character sets, \W is equivalent to
[*a-zA-Z 0-9]

\s Any white-space character; "\w*n\s' matches words that end with
equivalent to [ \f\n\r\t\v] the letter n, followed by a white-space

character.

\S Any non-white-space character; "\d\S"' matches a numeric digit followed
equivalent to [~ \F\n\r\t\v] by any non-white-space character.

\d Any numeric digit; equivalent to "\d*' matches any number of
[0-9] consecutive digits.

\D Any nondigit character; equivalent to| ' \w*\D\>"' matches words that do not

[70-9]

end with a numeric digit.

\oN or \o{N}

Character of octal value N

'\o{40} ' matches the space character,
defined by octal 40.
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Metacharacter |Description

Example

\XN or \x{N}

Character of hexadecimal value N

'\x2C"' matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it Example
occurs...

expr* 0 or more times consecutively. "“\w*' matches a word of any length.

expr? 0 times or 1 time. "“\w*(\.m)?"' matches words that
optionally end with the extension .m.

expr+ 1 or more times consecutively. '<img src="\w+\.gif">"' matches an
<img> HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n '\S{4,8}"' matches between four and

times consecutively.

{0,1} is equivalent to ?.

eight non-white-space characters.
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Quantifier Matches the expression when it Example
occurs...
expr{m,} At least m times consecutively. '<a href="\w{l, }\.html">"' matches
. an <a> HTML tag when the file name
{0, } and {1, } are equivalent to * and |contains one or more characters.
+, respectively.
expr{n} Exactly n times consecutively. '\d{4} ' matches four consecutive digits.

Equivalent to {n,n}.

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many Given the text
characters as possible. '<tr><td><p>text</p></td>"', the
expression '</?t.*>"' matches all
characters between <tr and /td>:
'<tr><td><p>text</p></td>'
exprq? Lazy expression: match as few Given the
characters as necessary. text'<tr><td><p>text</p></td>",
the expression '</?t.*?>"' ends each
match at the first occurrence of the
closing angle bracket (>):
'<tr>! '<td>' '</td>"
exprq+ Possessive expression: match as much as |Given the

possible, but do not rescan any portions
of the text.

text' <tr><td><p>text</p></td>"',
the expression '</?t.*+>"' does not
return any matches, because the closing
angle bracket is captured using . *, and
is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.
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Grouping Description Example

Operator

(expr) Group elements of the expression and 'Joh?n\s (\w*) ' captures a token that
capture tokens. contains the last name of any person

with the first name John or Jon.

(?:expr) Group, but do not capture tokens. "(?:[aeiou] ["aeiou]) {2} ' matches

two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon’.
Without grouping, ' [aeiou] [~aeiou]
{2} "matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack "A(?>.*)Z"' does not match 'AtoZ’,
within the group to complete the match, |although 'A(?:.*)Z' does. Using the
and do not capture tokens. atomic group, Z is captured using . * and

is not rescanned.

(exprl] Match expression exprl or expression |'(let]|tel)\w+' matches words that

expr2) expr2. start with let or tel.
If there is a match with exprl, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example

~expr Beginning of the input text. "“"M\w* ' matches a word starting with M
at the beginning of the text.

expr$ End of the input text. "\w*m$ ' matches words ending with m
at the end of the text.

\<expr Beginning of a word. "\<n\w*' matches any words starting

with n.
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Anchor Matches the... Example
expr\> End of a word. "\w*e\>' matches any words ending
with e.

Lookaround Assertions
Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.
The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround Description Example

Assertion

expr(?=test)

Look ahead for characters that match
test.

"\w*(?=1ing) ' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test)

Look ahead for characters that do not
match test.

"i(?!ng) ' matches instances of the
letter i that are not followed by ng.

(?<=test)expr

Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text ' renew,
reuse, recycle'

(?<!test)expr

Look behind for characters that do not
match test.

"(?<!\d) (\d) (?!\d) ' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a

logical

AND.

Operation

Description

Example

(?=test)expr

Match both test and expr.

'"(?=[a-z])["aeiou] ' matches
consonants.

(?!test)expr

Match expr and do not match test.

"(?![aeiou])[a-z]"' matches
consonants.
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Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then
use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd) . Dynamic expressions must return a logical or numeric value.

Conditional Operator

Description

Example

exprl|expr2

Match expression exprl or
expression expr2.

If there is a match with exprl,
then exprz2 is ignored.

'(let]|tel)\w+' matches words
that start with let or tel.

(?(cond)expr)

If condition cond is true, then
match expr.

"(?(?@ispc) [A-Z]:\\)"'
matches a drive name, such as C:\,
when run on a Windows® system.

(?(cond)exprl|
expr2)

If condition cond is true, then
match exprl. Otherwise, match
expr2.

'"Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator

Description

Example

(expr)

Capture in a token the characters
that match the enclosed
expression.

'Joh?n\s (\w*) ' captures a token
that contains the last name of any
person with the first name John or
Jon.
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Ordinal Token Operator

Description

Example

\N

Match the Nth token.

'<(\w+) . *>,*</\1>" captures
tokens for HTML tags, such as
"title' from the text
'<title>Some text</title>'.

(?(N)exprl|expr2)

If the Nth token is found, then
match exprl. Otherwise, match
expr2.

'"Mr(s?)\..*?(?(1)her|his)
\w* ' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator

Description

Example

(?<name>expr) Capture in a named token the "(?<month>\d+) - (?<day>\d+) -
characters that match the enclosed| (?<yr>\d+) ' creates named
expression. tokens for the month, day, and year

in an input date of the form mm-dd-
yy.

\k<name> Match the token referred to by '<(?<tag>\w+) . *>. *</
name. \k<tag>>"' captures tokens for

HTML tags, such as 'title' from
the text '<title>Some text</
title>"'.

(?(name)exprl| If the named token is found, then |'Mr(?<sex>s?)\..*?(?

expr2) match exprl. Otherwise, match (sex)her|his) \w*' matches

expr2.

text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note If an expression has nested parentheses, MATLAB® captures tokens that
correspond to the outermost set of parentheses. For example, given the search pattern
'(and(y|rew)) ', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to
determine the text to match.
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The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example

(??expr) Parse expr and include the resulting | '~ (\d+) ((??\\w{$1}))"'
term in the match expression. determines how many characters to

match by reading a digit at the
When parsed, expr must correspond |beginning of the match. The dynamic
to a complete, valid regular expression is enclosed in a second set
expression. Dynamic expressions that |of parentheses so that the resulting
use the backslash escape character (\) |match is captured in a token. For
require two backslashes: one for the |instance, matching '5XXXXX'
initial parsing of expr, and one for the |captures tokens for '5' and
complete match. PXXXXX!".

(??@cmd) Execute the MATLAB command "(.{2,}).2(??@fliplr($1))"
represented by cmd, and include the |finds palindromes that are at least
output returned by the command in four characters long, such as 'abba“.
the match expression.

(?@cmd) Execute the MATLAB command "\w*? (\w) (?@disp($1))\1\w*"

represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator

Description

$& or $0 Portion of the input text that is currently a match

$° Portion of the input text that precedes the current match

$' Portion of the input text that follows the current match (use $' ' to
represent $')

$N Nth token

$<name> Named token

${cmd} Output returned when MATLAB executes the command, cmd

Comments
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Characters

Description

Example

(?#comment)

Insert a comment in the regular
expression. The comment text is
ignored when matching the input.

"(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description

(?-1) Match letter case (default for regexp and regexprep).

(?1) Do not match letter case (default for regexpi).

(?s) Match dot (.) in the pattern with any character (default).

(?-5s) Match dot in the pattern with any character that is not a newline character.

(?-m) Match the ~ and $ metacharacters at the beginning and end of text
(default).

(?m) Match the ~ and $ metacharacters at the beginning and end of a line.

(?-x) Include space characters and comments when matching (default).

(?x) Ignore space characters and comments when matching. Use '\ ' and

"\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(71)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(71i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.

Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

Replacement text, specified as a character vector, a cell array of character vectors, or a
string array, as follows:
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+ If replace is a single character vector and expression is a cell array of character
vectors, then regexprep uses the same replacement text for each expression.

* If replaceis a cell array of N character vectors and expression is a single character
vector, then regexprep attempts N matches and replacements.

» Ifboth replace and expression are cell arrays of character vectors, then they must
contain the same number of elements. regexprep pairs each replace element with
its corresponding element in expression.

The replacement text can include regular characters, special characters (such as tabs or
new lines), or replacement operators, as shown in the following tables.

Replacement Operator |Description

$& or $0 Portion of the input text that is currently a match

$° Portion of the input text that precedes the current match

$' Portion of the input text that follows the current match (use $' "' to
represent $')

$N Nth token

$<name> Named token

${cmd} Output returned when MATLAB executes the command, cmd

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\Vv Vertical tab

\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Data Types: char | cell | string
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Tips

» Text Analytics Toolbox provides functions for common text preprocessing steps. For
example, to remove punctuation and symbol characters, use erasePunctuation or
to remove stem words using the Porter stemmer, use normalizeWords. For more
information, see “Text Data Preparation”.

See Also

bagOfWords | docfun | erasePunctuation | lower | normalizeWords | replace |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1-191



1 Functions — Alphabetical List

removeDocument

Remove documents from bag-of-words or bag-of-n-grams model

Syntax

newBag = removeDocument(bag, idx)

Description

newBag = removeDocument(bag,idx) removes the documents with indices specified
by idx from the bag-of-words or bag-of-n-grams model bag. If the removed documents
contain words or n-grams that do not appear in the remaining documents, then the
function also removes these words or n-grams from bag.

Examples

Remove Documents from Bag-of-Words Model

Remove selected documents from a bag-of-words model.

documents = tokenizedDocument([ ...
"an example of a short sentence"
"a second short sentence"
"a third example"
"a final sentence"]);

bagO0fWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [4x9 double]

Vocabulary: [1x9 string]
NumWords: 9
NumDocuments: 4
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Remove the first and third documents from bag.

idx = [1 3];
newBag = removeDocument(bag,idx)

newBag =
bagO0fWords with properties:

Counts: [2x5 double]

Vocabulary: ["a" "short" "sentence" "second"
NumWords: 5
NumDocuments: 2

Remove the same documents using logical indices.

idx = logical([1 0 1 0]);
newBag = removeDocument(bag,idx)

newBag =
bagOfWords with properties:

Counts: [2x5 double]

Vocabulary: ["a" "short" "sentence" "second"
NumWords: 5
NumDocuments: 2

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

"final"]

"final"]

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a

bag0fNgrams object.

idx — Indices of documents to remove
vector of numeric indices | vector of logical indices

Indices of documents to remove, specified as a vector of numeric indices or a vector of

logical indices.
Example: [2 4 6]
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Example: [0 1 0 1 0 1]

Output Arguments

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of
newBag is the same as the type of bag.

See Also

addDocument | bag0fNgrams | bag0fWords | removeEmptyDocuments |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeEmptyDocuments

Remove empty documents from tokenized document array, bag-of-words model, or bag-of-
n-grams model

Syntax

newDocuments = removeEmptyDocuments(documents)
newBag = removeEmptyDocuments(bag)
[ ,idx] = removeEmptyDocuments( )

Description

newDocuments = removeEmptyDocuments(documents) removes documents which
have no words from documents.

newBag = removeEmptyDocuments (bag) removes documents which have no words or
n-grams from the bag-of-words or bag-of-n-grams model bag.

[ ,idx] = removeEmptyDocuments( ) also returns the indices of the removed
documents.

Examples

Remove Empty Documents from Array
Remove documents containing no words from an array of tokenized documents.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
"an example of a short sentence"

"a second short sentence"
n II])
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documents =
4x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 0 tokens:

(3,1) 4 tokens: a second short sentence

(4,1) 0 tokens:

Remove the empty documents.

newDocuments = removeEmptyDocuments(documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Remove Empty Documents from Bag-of-Words Model
Remove documents containing no words from bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"

"a second short sentence"

nn ] );
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [4x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 4

Remove the empty documents from the bag-of-words model.
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newBag removeEmptyDocuments (bag)

newBag =
bagOfWords with properties:

Counts: [2x7 double]

Vocabulary: [1x7 string]
NumWords: 7
NumDocuments: 2

Remove Documents and Corresponding Labels

Remove documents containing no words from an array and use the indices of removed
documents to remove the corresponding labels also.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"

")

documents =
4x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 0 tokens:

(3,1) 4 tokens: a second short sentence

(4,1) 0 tokens:

Create a vector of labels.
'Labe'l-s = [IITII; IIFII; IIFII; IITII]

labels = 4x1 string array
IITII
n FII
n FII
IITII
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Remove the empty documents and get the indices of the removed documents.
[newDocuments, idx] = removeEmptyDocuments(documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence
idx = 2x1

2
4

Remove the corresponding labels from labels.
labels(idx) = []
labels = 2x1 string array

||T||
||F||

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bag0OfNgrams object.
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bag0fWords object or a bag0fNgrams object. The type of
newBag is the same as the type of bag.

idx — Indices of removed documents
vector of positive integers

Indices of removed documents, returned as a vector of positive integers.

See Also

addDocument | bag0fNgrams | bag0fWords | removeDocument |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removelnfrequentNgrams

Remove infrequently seen n-grams from bag-of-n-grams model

Syntax

removeInfrequentNgrams(bag, count)
removeInfrequentNgrams(bag, count, 'NgramLengths', lengths)

newBag
newBag

Description

newBag = removelInfrequentNgrams(bag, count) removes the n-grams that appear
at most count times in total from the bag-of-n-grams model bag.

newBag = removelInfrequentNgrams(bag,count, 'NgramLengths', lengths) only
removes n-grams with lengths specified by lengths.

Examples

Remove Infrequent N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. Specify to count bigrams (pairs of words) and trigrams
(triples of words).

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])
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bag =

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams :
NumDocuments:

[154x18022 double]
[1x3092 string]
[18022x3 string]
[2 3]

18022

154

Remove n-grams of any length that appear two or fewer times in total.

bag
bag =

removeInfrequentNgrams(bag,?2)

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams :
NumDocuments:

[154x103 double]
[1x73 string]
[103x3 string]
[2 3]

103

154

Remove bigrams that appear four or fewer times in total.

bag = removelInfrequentNgrams(bag,4, 'NgramLengths',2)

bag =

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams:
NumDocuments:

[154x41 double]
[1x30 string]
[41x3 string]
[2 3]

41

154
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Input Arguments

bag — Input bag-of-n-grams model
bag0fNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

count — Count threshold
positive integer

Count threshold, specified as a positive integer. The function removes the n-grams that
appear count times in total or fewer.

lengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as a positive integer or a vector of positive integers.
If you specify lengths, the function removes infrequent n-grams of the specified lengths

only. If you do not specify lengths, then the function removes infrequent n-grams
regardless of length.

Example: [1 2 3]

Output Arguments

newBag — Output bag-of-n-grams model
bag0fNgrams object

Output bag-of-n-grams model, returned as a bag0fNgrams object.

See Also

bagO0fNgrams | bag0OfWords | removeEmptyDocuments | removeNgrams |
tokenizedDocument

Introduced in R2018a
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removelnfrequentWords

Remove words with low counts from bag-of-words model

Syntax

newBag = removelInfrequentWords(bag, count)

Description

newBag = removelInfrequentWords(bag,count) removes the words that appear at
most count times in total from the bag-of-words model bag.

Examples

Remove Infrequent Words
Remove the words that appear two times or fewer from a bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"
"another example"
"a short example"]);

bagOfWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [4x8 double]

Vocabulary: [1x8 string]
NumWords: 8
NumDocuments: 4
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Remove the words that appear two times or fewer from the bag-of-words model.

count = 2;
newBag = removelInfrequentWords(bag, count)

newBag =
bag0fWords with properties:

Counts: [4x3 double]
Vocabulary: ["example" "a" "short"]
NumWords: 3
NumDocuments: 4

Input Arguments

bag — Input bag-of-words model
bagO0fWords object

Input bag-of-words model, specified as a bag0fWords object.

count — Count threshold to remove words
positive integer

Count threshold to remove words, specified as a positive integer. The function removes
the words that appear count times in total or fewer.

See Also

bagO0fWords | removeEmptyDocuments | removelLongWords | removeShortWords |
removeWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeLongWords

Remove long words from documents or bag-of-words model

Syntax

newDocuments = removeLongWords(documents, len)
newBag = removelLongWords(bag, len)

Description

newDocuments = removeLongWords(documents, len) removes words of length len
or greater from documents.

newBag = removelLongWords (bag, len) removes words of length len or greater from
the bag0fWords object bag.

Examples

Remove Long Words from Document

Remove the words with seven or greater characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removelLongWords(document,7)

newDocument =
tokenizedDocument:

4 tokens: An of a short
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Remove Long Words from Bag-of-Words Model
Remove the words with seven or greater characters from a bag-of-words model.
documents = tokenizedDocument([

"an example of a short sentence"

"a second short sentence"]);

bag = bag0fWords(documents);
newBag = removelLongWords(bag,7)

newBag =
bag0fWords with properties:

Counts: [2x5 double]
Vocabulary: ["an" "of" "a" "short" "second"]

NumWords: 5
NumDocuments: 2

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bag0fWords object

Input bag-of-words model, specified as a bag0fWords object.

len — Minimum length of words to remove
positive integer

Minimum length of words to remove, specified as a positive integer. The function removes
words with len or greater characters.
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bag0fWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagOfWords | removeInfrequentWords | removeShortWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeNgrams

Remove n-grams from bag-of-n-grams model

Syntax

removeNgrams (bag, ngrams)
removeNgrams (bag, idx)

newBag
newBag

Description

newBag = removeNgrams(bag,ngrams) removes the specified n-grams from the bag-
of-n-grams model bag.

newBag = removeNgrams (bag,idx) specifies n-grams by numeric or logical indices in
bag.Ngrams. This syntax is the same as newBag =
removeNgrams (bag,bag.Ngrams(idx,:)).

Examples

Remove N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bag = bag0fNgrams(documents)

1-208



removeNgrams

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

View the top five n-grams.

topkngrams(bag,5)
ans=5x3 table
Ngram Count NgramLength

"thou" "art" 34 2
"mine" "eye" 15 2
"thy" "self" 14 2
"thou" "dost" 13 2
"mine" "own" 13 2

Remove the n-grams [ "thou" "art"] and ["thou" "dost"] from the model. View the
new top 5 n-grams.

ngrams = [...
Ilthoull Ilartll
"‘thOU" "dOS't"];
bag = removeNgrams(bag,ngrams);

topkngrams(bag,5)
ans=5x3 table
Ngram Count NgramLength

"mine" "eye" 15 2
"thy" "self" 14 2
"mine" "own" 13 2
"thy" "sweet" 12 2
"thy" "love" 11 2
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Remove N-Grams from Bag-of-N-Grams Model by Index

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create bag-of-n-grams model.
bag = bagOfNgrams(documents)

bag =
bagOfNgrams with properties:

Counts: [154x8799 doublel]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

View the first ten n-grams in the model.
bag.Ngrams(1:10, :)

ans = 10x2 string array

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
"rose" "might"
"might" "never"
"never" "die"

"die" "riper"
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Remove the 9th and 10th n-grams from the model. View the new list of the first ten n-
grams.

idx [9 10];
bag removeNgrams (bag, idx) ;
bag.Ngrams(1:10, :)

ans = 10x2 string array

"fairest" "creatures"
"creatures" "desire"
"desire" "increase"
"increase" "thereby"
"thereby" "beautys"
"beautys" "rose"
“rose" "might"
"might" "never"
"riper" "time"
"time" "decease"

Input Arguments

bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

ngrams — N-grams to remove
string array | character vector | cell array of character vectors

N-grams to remove, specified as a string array, character vector, or a cell array of
character vectors.

If ngrams is a string array or cell array, then it has size NumNgrams-by-maxN , where
NumNgrams is the number of n-grams, and maxN is the length of the largest n-gram. If
ngrams is a character vector, then it represents a single word (unigram).

The value of ngrams (i, j) is the jth word of the ith n-gram. If the number of words in
the ith n-gram is less than maxN, then the remaining entries of the ith row of ngrams are
empty.

Example: ["An" ""; "An example"; "example" ""]
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Data Types: string | char | cell

idx — Indices of n-grams to remove
vector of numeric indices | vector of logical indices

Indices of n-grams to remove, specified as a vector of numeric indices or a vector of
logical indices. The indices in idx correspond to the rows of the bag.Ngrams.

Example: [1 5 10]

See Also

bagOfNgrams | bag0OfWords | removeEmptyDocuments | removeInfrequentNgrams |
tokenizedDocument

Introduced in R2018a
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removeShortWords

Remove short words from documents or bag-of-words model

Syntax

newDocuments = removeShortWords(documents, len)
newBag = removeShortWords(bag, len)

Description

newDocuments = removeShortWords(documents,len) removes words of length len
or less from documents.

newBag = removeShortWords(bag, len) removes words of length len or less from
the bag0fWords object bag.

Examples

Remove Short Words from Document

Remove the words with two or fewer characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeShortWords(document,2)

newDocument =
tokenizedDocument:

3 tokens: example short sentence
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Remove Short Words from Bag-of-Words Model
Remove the words with two or fewer characters from a bag-of-words model.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeShortWords(bag,2)

newBag =
bag0fWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]

NumWords: 4
NumDocuments: 2

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bag0fWords object

Input bag-of-words model, specified as a bag0fWords object.

len — Maximum length of words to remove
positive integer

Maximum length of words to remove, specified as a positive integer. The function removes
words with len or fewer characters.
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Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bag0fWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagO0fWords | removeInfrequentWords | removeLongWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeWords

Remove selected words from documents or bag-of-words model

Syntax

removeWords (documents,words)
removeWords (documents, idx)

newDocuments =
newDocuments =
removeWords (bag,words)
removeWords (bag, idx)

newBag
newBag

Description

newDocuments = removeWords (documents,words) removes the specified words
from documents.

newDocuments = removeWords (documents,idx) removes words by specifying the
numeric or logical indices idx of the words in documents.Vocabulary. This syntax is
the same as newDocuments =

removeWords (documents,documents.Vocabulary(idx)).

newBag = removeWords (bag,words) removes the specified words from the bag-of-
words model bag.

newBag = removeWords (bag,idx) removes words by specifying the numeric or logical
indices idx of the words in bag.Vocabulary. This syntax is the same as newBag =
removeWords (bag,bag.Vocabulary(idx)).

Examples
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Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.
documents = tokenizedDocument ([

"an example of a short sentence"

"a second short sentence"]);
newDocuments = removeWords (documents, stopWords)

newDocuments =
2x1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence

Remove Words from Documents by Index
Remove words from documents by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.
documents = tokenizedDocument ([

"I love MATLAB"

"I love MathWorks"])

documents =
2x1 tokenizedDocument:

(1,1) 3 tokens: I love MATLAB
(2,1) 3 tokens: I love MathWorks

View the vocabulary of documents.
documents.Vocabulary

ans = 1x4 string array
"I "love" “"MATLAB" "MathWorks"
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Remove the first and third words of the vocabulary from the documents by specifying the
numeric indices [1 3].

idx = [1 31;
newDocuments = removeWords (documents, idx)

newDocuments =
2x1 tokenizedDocument:

(1,1) 1 tokens: love
(2,1) 2 tokens: love MathWorks

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newDocuments = removeWords (documents,idx)

newDocuments =
2x1 tokenizedDocument:

(1,1) 1 tokens: love
(2,1) 2 tokens: love MathWorks

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeWords(bag, stopWords)

newBag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]
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NumWords: 4
NumDocuments: 2

Remove Words from Bag-of-Words Model by Index

Remove words from a bag-of-words model by inputting a vector of numeric indices to

removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
"I love MATLAB"
"T love MathWorks"]);
bagOfWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [2x4 double]
Vocabulary: ["I" "love" "MATLAB"
NumWords: 4
NumDocuments: 2

View the vocabulary of bag.
bag.Vocabulary

ans = 1x4 string array
"I "love" "MATLAB" "MathWorks"

"MathWorks"]

Remove the first and third words of the vocabulary from the bag-of-words model by

specifying the numeric indices [1 3].

idx = [1 31;
newBag = removeWords(bag, idx)

newBag =
bagOfWords with properties:
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Counts: [2x2 double]
Vocabulary: ["love" "MathWorks"]
NumWords: 2
NumDocuments: 2

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newBag = removeWords(bag,idx)

newBag =
bag0fWords with properties:

Counts: [2x2 double]
Vocabulary: ["love" "MathWorks"]
NumWords: 2
NumDocuments: 2

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bag0fWords object

Input bag-of-words model, specified as a bag0fWords object.

words — Words to remove

string vector | character vector | cell array of character vectors

Words to remove, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats it as a single

word.

Data Types: string | char | cell
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idx — Indices of words in vocabulary to remove
vector of numeric indices | vector of logical indices

Indices of words to remove, specified as a vector of numeric indices or a vector of logical
indices. The indices in idx correspond to the locations of the words in the Vocabulary
property of the input documents or bag-of-words model.

Example: [1 5 10]

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also

bagOfWords | removeEmptyDocuments | removeInfrequentWords |
removeLongWords | removeShortWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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replace

Find and replace substrings in documents

Syntax

newDocuments = replace(documents,old, new)

Description

newDocuments = replace(documents,old, new) replaces all occurrences of old in
documents with new.

Examples

Replace Substrings in Documents

Replace words in a document array.

documents = tokenizedDocument ([
"an extreme example"
"another extreme example"])

documents =
2x1 tokenizedDocument:

(1,1) 3 tokens: an extreme example
(2,1) 3 tokens: another extreme example

replace(documents, "example", "sentence")

newDocuments

newDocuments =
2x1 tokenizedDocument:

(1,1) 3 tokens: an extreme sentence
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(2,1) 3 tokens: another extreme sentence

Replace substrings of the words.
newDocuments = replace(documents, "ex","X-")

newDocuments =
2x1 tokenizedDocument:

(1,1) 3 tokens: an X-treme X-ample
(2,1) 3 tokens: another X-treme X-ample

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of
character vectors.

Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character
vectors.

Data Types: string | char | cell

Output Arguments

newDocuments — Output documents
tokenizedDocument array
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Output documents, returned as a tokenizedDocument array.

See Also

bagO0fWords | docfun | Llower | normalizeWords | replace | tokenizedDocument |
upper

Topics
“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2017b
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resume

Resume fitting LDA model

Syntax

updatedMdl = resume(ldaMdl, bag)
updatedMdl = resume(ldaMdl, counts)
updatedMdl = resume(  ,Name,Value)
Description

updatedMdl = resume(ldaMdl, bag) returns an updated LDA model by training for
more iterations on the bag-of-words or bag-of-n-grams model bag. The input bag must be
the same model used to fit LdaMdl.

updatedMdl = resume(ldaMdl, counts) returns an updated LDA model by training
for more iterations on the documents represented by the matrix of word counts counts.
The input counts must be the same matrix used to fit LldaMd 1.

updatedMdl = resume( ,Name, Value) specifies additional options using one or
more name-value pair arguments.

Examples

Resume Fitting of LDA Model
To reproduce the results in this example, set rng to 'default’.
rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.
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filename = "sonn
str = extractFil
textData = split
documents = toke

Create a bag-of-wo

bag = bag0fWords
bag =
bag0fWords wit
Counts:
Vocabulary:
NumWords:
NumDocuments:

etsPreprocessed. txt";
eText(filename);
(str,newline);
nizedDocument (textData);

rds model using bagOfWords.

(documents)

h properties:

[154x3092 double]
[1x3092 string]
3092

154

Fit an LDA model with four topics. The resume function does not support the default
solver for fitlda. Set the LDA solver to be collapsed variational Bayes, zeroth order.

numTopics = 4;
mdl = fitlda(bag

,humTopics, 'Solver', 'cvb0")

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | [ | iterations |
| 0 | 0.02 | | 3.292e+03 | 1.000 | 0 |
| 1 | 0.02 | 1.4970e-01 | 1.147e+03 | 1.000 | 0 |
| 2 | 0.01 | 7.1229e-03 | 1.091e+03 | 1.000 | 0 |
| 3 0.02 | 8.1261e-03 | 1.031e+03 | 1.000 | 0 |
| 4 | 0.02 | 8.8626e-03 | 9.703e+02 | 1.000 | 0 |
| 5| 0.03 | 8.5486e-03 | 9.154e+02 | 1.000 | 0 |
| 6 | 0.01 | 7.4632e-03 | 8.703e+02 | 1.000 | 0 |
| 7 | 0.02 | 6.0480e-03 | 8.356e+02 | 1.000 | 0 |
| 8 | 0.02 | 4.5955e-03 | 8.102e+02 | 1.000 | 0 |
| 9 | 0.01 | 3.4068e-03 | 7.920e+02 | 1.000 | 0 |
| 10 | 0.01 | 2.5353e-03 | 7.788e+02 | 1.000 | 0 |
| 11 | 0.02 | 1.9089e-03 | 7.690e+02 | 1.222 | 10 |
| 12 | 0.01 | 1.2486e-03 | 7.626e+02 | 1.176 | 7 |
| 13 | 0.01 | 1.1243e-03 | 7.570e+02 | 1.125 | 7 |
| 14 | 0.01 | 9.1253e-04 | 7.524e+02 | 1.079 | 7 |
| 15 | 0.02 | 7.5878e-04 | 7.486e+02 | 1.039 | 6 |
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| 16 | 0.03 | 6.6181e-04 | 7.454e+02 | 1.004 | 6 |
| 17 | 0.02 | 6.0400e-04 | 7.424e+02 | 0.974 | 6 |
| 18 | 0.02 | 5.6244e-04 | 7.396e+02 | 0.948 | 6 |
| 19 | 0.02 | 5.0548e-04 | 7.372e+02 | 0.926 | 5 |
| 20 | 0.01 | 4.2796e-04 | 7.351e+02 | 0.905 | 5 |
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 21 | 0.02 | 3.4941e-04 | 7.334e+02 | 0.887 | 5 |
| 22 | 0.03 | 2.9495e-04 | 7.320e+02 | 0.871 | 5 |
| 23 | 0.01 | 2.6300e-04 | 7.307e+02 | 0.857 | 5 |
| 24 | 0.01 | 2.5200e-04 | 7.295e+02 | 0.844 | 4 |
| 25 | 0.01 | 2.4150e-04 | 7.283e+02 | 0.833 | 4 |
| 26 | 0.01 | 2.0549e-04 | 7.273e+02 | 0.823 | 4 |
| 27 | 0.02 | 1.6441e-04 | 7.266e+02 | 0.813 | 4 |
| 28 | 0.01 | 1.3256e-04 | 7.259e+02 | 0.805 | 4 |
| 29 | 0.01 | 1.1094e-04 | 7.254e+02 | 0.798 | 4 |
| 30 | 0.01 | 9.2849e-05 | 7.249e+02 | 0.791 | 4 |
mdl =
ldaModel with properties:
NumTopics: 4
WordConcentration: 1
TopicConcentration: 0.7908

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:
Vocabulary:
FitInfo:

View information about the fit.

mdl.FitInfo

ans =

struct with fields:

TerminationCode: 1

TerminationStatus:

NegativelLoglLikelihood:
Perplexity:

NumIterations: 30

6.3
724

042e+04
. 9445

[0.2654 0.2531 0.2480 0.2336]
[154x4 double]
[3092x4 double]
[1x3092 string]
[1x1 struct]

"Relative tolerance on log-likelihood satisfied."
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Solver:
History:

"cvbo"
[1x1 struct]

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance =

le-5;
updatedMdl = resume(mdl,bag,
"LogLikelihoodTolerance',tolerance)

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 30 | 0.00 | | 7.249e+02 | 0.791 | 0 |
| 31 | 0.02 | 8.0569e-05 | 7.246e+02 | 0.785 | 3
| 32 | 0.02 | 7.4692e-05 | 7.242e+02 | 0.779 | 3
| 33 | 0.01 | 6.9802e-05 | 7.239%e+02 | 0.774 | 3
| 34 | 0.01 | 6.1154e-05 | 7.236e+02 | 0.770 | 3
| 35 | 0.01 | 5.3163e-05 | 7.233e+02 | 0.766 | 3
| 36 | 0.01 | 4.7807e-05 | 7.231e+02 | 0.762 | 3
| 37 | 0.01 | 4.1820e-05 | 7.229e+02 | 0.759 | 3
| 38 | 0.03 | 3.6237e-05 | 7.227e+02 | 0.756 | 3
| 39 | 0.02 | 3.1819e-05 | 7.226e+02 | 0.754 | 2 |
| 40 | 0.02 | 2.7772e-05 | 7.224e+02 | 0.751 | 2 |
| 41 | 0.01 | 2.5238e-05 | 7.223e+02 | 0.749 | 2 |
| 42 | 0.01 | 2.2052e-05 | 7.222e+02 | 0.747 | 2 |
| 43 | 0.02 | 1.8471e-05 | 7.221e+02 | 0.745 | 2 |
| 44 | 0.02 | 1.5638e-05 | 7.221e+02 | 0.744 | 2 |
| 45 | 0.02 | 1.3735e-05 | 7.220e+02 | 0.742 | 2 |
| 46 | 0.02 | 1.2298e-05 | 7.219e+02 | 0.741 | 2 |
| 47 | 0.01 | 1.0905e-05 | 7.219e+02 | 0.739 | 2 |
| 48 | 0.01 | 9.5581e-06 | 7.218e+02 | 0.738 | 2 |
updatedMdl =
ldaModel with properties:
NumTopics:
WordConcentration:
TopicConcentration:

CorpusTopicProbabilities:
DocumentTopicProbabilities:
TopicWordProbabilities:

4
1
0.7383
[
[
[

0.2679 0.2517 0.2495 0.2309]
154x4 double]
3092x4 double]
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Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

View information about the fit.
updatedMdl.FitInfo

ans = struct with fields:
TerminationCode: 1
TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 48
NegativelLoglLikelihood: 6.3001e+04
Perplexity: 721.8357
Solver: "cvbO"
History: [1x1 struct]

Input Arguments

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object. To resume fitting a model, you must
fit ldaMd1 with solver 'savb', 'avb', or 'cvb0"'.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagO0fNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts(i, j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.
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Note The arguments bag and counts must be the same used to fit LldaMd1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'LogLikelihoodTolerance',0.001 specifies a log-likelihood tolerance of
0.001.

Solver Options

DocumentsIn — Orientation of documents
"rows' (default) | ' columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.

* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns’, then you might experience a significant reduction
in optimization-execution time.

FitTopicConcentration — Option for fitting topic concentration parameter
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

The default value is the value used to fit LTdaMd1.
Example: 'FitTopicConcentration', true

Data Types: logical
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FitTopicProbabilities — Option for fitting topic probabilities
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'"FitTopicConcentration' and either true or false.

The default value is the value used to fit LdaMd1.

a:ao(p1 P, pK)

The function fits the Dirichlet prior on the topic mixtures,

where % is the topic concentration and P>+ Pk are the corpus topic probabilities
which sum to 1.

Example: 'FitTopicProbabilities',true

Data Types: Llogical

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
‘IterationLimit' and a positive integer.

This option supports models fitted with batch solvers only ('cgs"', 'avb', and 'cvb0').
Example: 'IterationLimit', 200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer
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Maximum number of passes through the data, specified as the comma-separated pair
consisting of 'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and
'MiniBatchLimit', then resume uses the argument that results in processing the
fewest observations.

This option supports models fitted with stochastic solvers only ('savb').

Example: 'DataPassLimit’',?2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting
of 'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit"' but not 'DataPassLimit’, then resume ignores the
default value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and
'DataPassLimit’, then resume uses the argument that results in processing the fewest
observations. The default value is ceil (numDocuments/MiniBatchSize), where
numDocuments is the number of input documents.

This option supports models fitted with stochastic solvers only ('savb').

Example: '"MiniBatchLimit', 200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit'
and a positive integer. The function processes MiniBatchSize documents in each
iteration.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchSize',512
Display Options

ValidationData — Validation data
[1 (default) | bag0OfWords object | bagOfNgrams object | sparse matrix of word counts



resume

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object,
or a sparse matrix of word counts. If the validation data is a matrix, then the data must
have the same orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

* 0 - Do not display verbose output.
* 1 - Display progress information.

Example: 'Verbose',0

Output Arguments

updatedMdl — Updated LDA model
ldaModel object (default)

Updated LDA model, returned as an LdaModel object.

See Also

bagO0fNgrams | bag0fWords | fitlda | ldaModel | logp | predict | transform |
wordcloud

Topics

“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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splitSentences

Split text into sentences

Syntax

newStr = splitSentences(str)

Description

newStr = splitSentences(str) splits str into an array of sentences.

Examples

Split Text into Sentences

Read the text from the example file sonnets. txt and split it into sentences.

filename = "sonnets.txt";
str = extractFileText(filename);
sentences = splitSentences(str);

View the first few sentences.
sentences(1:10)

ans = 10x1 string array
"THE SONNETS"
"by William Shakespeare"
IIIII
"From fairest creatures we desire increase,..."
IIIIII
"When forty winters shall besiege thy brow,..."
"How much more praise deserv'd thy beauty's use "
"This were to be new made when thou art old,
IIIIIII
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"Look in thy glass and tell the face thou viewest..."

Input Arguments

str — Input text
string scalar | character vector | scalar cell array containing a character vector

Input text, specified as a string scalar, a character vector, or a scalar cell array containing
a character vector.

Data Types: string | char | cell

Output Arguments

newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
erasePunctuation | eraseTags | eraseURLs | split | splitlines |
tokenizedDocument

Introduced in R2018a
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stopWords

List of stop words

Syntax

words = stopWords

Description

words = stopWords returns a string array of common words which can be removed
from documents before analysis. For an example showing how to remove stop words from
documents, see “Remove Stop Words from Documents” on page 1-236.

Examples

Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"]);
newDocuments = removeWords (documents,stopWords)

newDocuments =
2x1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence
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Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);

bag = bag0fWords(documents);

newBag = removeWords(bag,stopWords)

newBag =
bag0fWords with properties:

Counts: [2x4 double]
Vocabulary: ["example" "short" "sentence" "second"]
NumWords: 4
NumDocuments: 2

See Also

bag0OfWords | removeInfrequentWords | removeLongWords | removeShortWords |
removeWords | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1-237



1 Functions — Alphabetical List

1-238

string

Convert scalar document to string vector

Syntax

words = string(document)

Description

words = string(document) converts a scalar tokenizedDocument to a string array
of words.

Examples

Convert Document to String

Convert a scalar tokenized document to a string array of words.
document = tokenizedDocument("an example of a short sentence")

document =
tokenizedDocument:

6 tokens: an example of a short sentence

words = string(document)

words = 1x6 string array

an" "example" "of" a "short" "sentence"
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Input Arguments

document — Input document
scalar tokenizedDocument

Input document, specified as a scalar tokenizedDocument object.

Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

See Also

context | doc2cell | doclength | joinWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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textscatter

2-D scatter plot of text

Syntax

ts = textscatter(x,y,str)

ts = textscatter(xy,str)

ts = textscatter(ax, )

ts = textscatter(  ,Name,Value)
Description

ts = textscatter(x,y,str) creates a text scatter plot with elements of str at the
locations specified by the vectors x and y, and returns the resulting TextScatter object.

ts = textscatter(xy,str) uses locations specified by the rows of xy. This syntax is
equivalent to textscatter(xy(:,1),xy(:,2),str).

ts = textscatter(ax, ) plots into axes ax. You can use any input arguments
from previous syntaxes.

ts = textscatter( ,Name, Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create Text Scatter Plot

Plot a string array of numbers at random points on a text scatter plot.

rand(50,1);
rand(50,1);

X =
y =
str = string(1:50);
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figure
textscatter(x,y,str);
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Alternatively, you can pass the coordinates x and y as a matrix xy, where x and y are the

columns of xy.

Xy = [x yl;
figure
textscatter(xy,str)
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Specify Word Colors
Create text scatter plot of a word embedding and specify word colors.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:
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Dimension: 50
Vocabulary: [1x9999 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 50.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans = 1x2

500 50

Embed the word vectors in two-dimensional space using tsne.
XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);

colorData = rand(numWords,3);

figure

textscatter(XY,words,
'ColorData',colorData)

title("Word Embedding t-SNE Plot")
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Word Embedding t-SNE Plot
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Input Arguments

X — x values
vector

x values, specified as a vector. X, y, and str must be of equal length.
Example: [1 2 3]

y — y values
vector
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y values, specified as a vector. X, y, and str must be of equal length.
Example: [1 2 3]

Xy — x and y values
matrix

x and y values, specified as a matrix with two columns. xy(i,1) and xy(1i,2)
correspond to the x and y values of the ith element of str, respectively. xy must have the
numel(str) rows.

textscatter(xy,str) is equivalent to textscatter(xy(:,1),xy(:,2),str).
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, and str
must be of equal length.

Example: ["one" "two" "three"]

Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'Marker', '*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100
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Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,
set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.

Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none"' | RGB triplet

Marker colors, specified as one of these values:

'auto' — For each marker, use the same color as the corresponding text labels.

* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[1 (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.
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» Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].
By default, Colors is equal to the ColorOrder property of the axes object.

Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments

ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created. For more information, see TextScatter Properties.

See Also

textscatter3 | wordcloud

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Visualize Text Data Using Word Clouds”

“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”

Introduced in R2017b
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textscatter3

3-D scatter plot of text

Syntax

ts = textscatter3(x,y,zstr)

ts = textscatter3(xyz,str)

ts = textscatter3(ax, )

ts = textscatter3( _ ,Name,Value)
Description

ts = textscatter3(x,y,zstr) creates a 3-D text scatter plot with elements of str at
the locations specified by the vectors X, y, and z.

ts = textscatter3(xyz,str) creates a 3-D text scatter plot with elements of str at
the locations specified by the rows of xyz. This syntax is equivalent to
textscatter(xyz(:,1),xyz(:,2),xyz(:,3),str).

ts = textscatter3(ax, ) plots into axes object ax. Use this syntax with any of
the input arguments in previous syntaxes.

ts = textscatter3( _ ,Name,Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create 3-D Text Scatter Plot

Plot a string array of numbers at random points on a 3-D text scatter plot.

X = rand(50,1);
y = rand(50,1);
z = rand(50,1);
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str = string(1:50);
figure
textscatter3(x,y,z,str);

Alternatively, you can pass the coordinates X, y, and z as a matrix xyz, where X, y, and z
are the columns of xyz.

xyz = [xy zl;

figure
textscatter3(xyz,str)
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Specify Word Colors
Create text scatter plot of a word embedding and specify word colors.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:
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Dimension: 50
Vocabulary: [1x9999 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 50.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans = 1x2

500 50

Embed the word vectors in a 3-D space using tsne.
XYZ = tsne(V, 'NumDimensions',3);

Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);

colorData = rand(numWords, 3);

figure

textscatter3(XYZ,words,
'ColorData',colorData)

title("Word Embedding t-SNE Plot")
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Word Embedding t-SNE Plot

Input Arguments

X — x values
vector

x values, specified as a vector. X, y, z, and str must be of equal length.

Example: [1 2 3]

y — y values
vector
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y values, specified as a vector. X, y, z, and str must be of equal length.
Example: [1 2 3]

z — z values
vector

z values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. X, y, z, and str
must be of equal length.

Example: ["one" "two" "three"]

Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Marker', '*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,

set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.
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If you set TextDensityPercentage to 100, then the software does not plot markers.

Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.

Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

‘auto' — For each marker, use the same color as the corresponding text labels.

* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[]1 (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

» Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property
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Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].
By default, Colors is equal to the ColorOrder property of the axes object.

Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments

ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created. For more information, see TextScatter Properties.

See Also

textscatter |wordcloud

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Visualize Text Data Using Word Clouds”

“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”

Introduced in R2017b
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TextScatter Properties

Control text scatter chart appearance and behavior

Description

TextScatter properties control the appearance and behavior of TextScatter object.
By changing property values, you can modify certain aspects of the text scatter chart.

Properties

Text

TextData — Text labels
string array | cell array of character vectors

Text labels, specified as a string array, or a cell array of character vectors.
Example: ["wordl" "word2" "word3"]

Data Types: string | cell

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,
set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.

If you set TextDensityPercentage to 100, then the software does not plot markers.

Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.

Example: 10
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Font Style

FontName — Font name
system supported font name | ' FixedWidth'

Font name, specified as the name of the font to use or 'FixedWidth'. To display and
print properly, the font name must be a font that your system supports. The default font
depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The
'"FixedWidth' value relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.

Example: 'Cambria’

FontSize — Font size
10 (default) | scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. One point equals
1/72 inch. To change the font units, use the FontUnits property.

Example: 12

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontAngle — Character slant
‘normal’ (default) | ‘italic’

Character slant, specified as 'normal’' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font might look the same as the normal font.

FontWeight — Thickness of text characters
'‘normal’' (default) | 'bold"

Thickness of the text characters, specified as one of these values:

* 'normal' — Default weight as defined by the particular font
* 'bold' — Thicker character outlines than normal

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.
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FontSmoothing — Smooth font character appearance
‘on' (default) | 'off'

Smooth font character appearance, specified as one of these values:
* 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text

characters to make the text easier to read.
+ 'off' — Do not apply font smoothing.

Text Box

EdgeColor — Color of box outline
‘none’ (default) | RGB triplet | character vector of color name

Color of box outline, specified as 'none', a three-element RGB triplet, or a character
vector of a color name. The default edge color of 'none' makes the box outline invisible.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0, 1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
‘red'or 'r' Red [1 0 0]
‘green' or 'g’ Green [0 1 0]
‘blue' or 'b’ Blue [0 0 1]
'yvellow' or 'y' Yellow [11 0]
‘magenta’ or 'm' Magenta [1 0 1]
‘cyan'or 'c' Cyan [0 1 1]
'white' or 'w' White [111]
'black' or 'k' Black [0 0 O]

Example: 'blue'’
Example: [0 0 1]

BackgroundColor — Color of text box background
'none’' (default) | 'data’ | RGB triplet
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Color of text box background, specified as one of these values:

* 'none'— Make the text box background transparent.

* ‘'data'— Use background color specified by ColorData. The software automatically
chooses a foreground to complement the background color.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

Margin — Space around text within text box
3 (default) | positive scalar

The space around the text within the text box, specified as a positive scalar in point units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: 8

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Markers

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

'auto' — For each marker, use the same color as the corresponding text labels.

* 'none' — Do not show markers.

* RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]
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MarkerSize — Marker size
6 (default) | positive scalar

Marker size, specified as a positive scalar.

Example: 10
Data

XData — x values
[ 1 (default) | scalar | vector

x values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in XData.

The input argument X to the textscatter and textscatter3 functions set the x
values. XData and YData must have equal lengths.

Example: [1 2 4 2 6]

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataSource — Variable linked to XData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to XData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
XData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x

YData — y values
[ 1 (default) | scalar | vector
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y values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in YData.

The input argument Y to the textscatter and textscatter3 functions set the y
values. XData and YData must have equal lengths.

Example: [1 3 3 4 6]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to YData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
YData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y

ZData — z values
[1 (default) | scalar | vector

z values, specified as a scalar or a vector.

» For 2-D scatter plots, ZData is empty by default.

» For 3-D scatter plots, the input argument Z to the scatter3 function sets the z
values. XData, YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration
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ZDataSource — Variable linked to ZData
"' (default) | character vector containing MATLAB workspace variable name

Variable linked to ZData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
ZData.

By default, there is no linked variable so the value is an empty character vector, ' '. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z’
ColorData — Text colors

[1 (default) | RGB triplet | matrix of RGB triplets | categorical vector
Text colors, specified as one of these values:

* RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0, 1]; for example,
[0.5 0.6 0.7].

* Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

» Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets
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Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0, 1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Visibility

Visible — State of visibility

‘on' (default) | 'off"

State of visibility, specified as one of these values:

* 'on' — Display the object.

+ 'off' — Hide the object without deleting it. You still can access the properties of an
invisible object.

Identifiers

Type — Type of graphics object
"textscatter'

This property is read-only.

Type of graphics object, returned as 'textscatter'. Use this property to find all objects
of a given type within a plotting hierarchy; for example, searching for the type using
findobj.

Tag — User-specified tag
"' (default) | character vector

This property is read-only.

User-specified tag to associate with the object, specified as a character vector. Tags
provide a way to identify graphics objects. Use this property to find all objects with a
specific tag within a plotting hierarchy; for example, searching for the tag using
findobj.

Example: 'January Data'

UserData — Data to associate with object
[ 1 (default) | any MATLAB data
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This property is read-only.

Data to associate with the object, specified as any MATLAB data; for example, a scalar,
vector, matrix, cell array, character array, table, or structure. MATLAB does not use this
data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.

Example: 1:100

DisplayName — Text used for legend label
"' (default) | character vector

This property is read-only.

Text used for the legend label, specified as a character vector. If you do not specify the
text, then the legend uses a label of the form 'dataN'. The legend does not display until
you call the legend command.

Example: 'Label Text'

Annotation — Control for including or excluding object from legend
Annotation object

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

* 'on' — Include the object in the legend (default).
+ 'off' — Do not include the object in the legend.

For example, exclude a stem chart from the legend.

p = plot(1:10, 'DisplayName', 'Line Chart');

hold on

s = stem(1:10, 'DisplayName', 'Stem Chart');

hold off

s.Annotation.LegendInformation.IconDisplayStyle = 'off';

legend('show')

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include.

p = plot(1:10, 'DisplayName’, 'Line Chart');
hold on
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s = stem(1:10, 'DisplayName', 'Stem Chart');
hold off
legend(p)

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
‘on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

* 'on' — Object handle is always visible.

+ 'off' — Object handle is invisible at all times. This option is useful for preventing
unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

* ‘'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command-line, but allows callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and
close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Interactive Control

ButtonDownFcn — Mouse-click callback
"' (default) | function handle | cell array | character vector
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Mouse-click callback, specified as one of these values:

* Function handle
» Cell array containing a function handle and additional arguments

* Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

* Clicked object — You can access properties of the clicked object from within the
callback function.

» Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

Note If the PickableParts property is set to 'none' orif the HitTest property is set
to 'off', then this callback does not execute.

Example: @myCallback
Example: {@myCallback,arg3}

UIContextMenu — Context menu
uicontextmenu object

Context menu, specified as a uicontextmenu object. Use this property to display a
context menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' orif the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'
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Selection state, specified as one of these values:

* 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
‘on', then MATLAB displays selection handles around the object.

« 'off' — Not selected.

SelectionHighlight — Display of selection handles when selected
‘on' (default) | 'off"

Display of selection handles when selected, specified as one of these values:

* 'on' — Display selection handles when the Selected property is set to ‘on"'.

+ 'off' — Never display selection handles, even when the Selected property is set to
‘on'.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
‘visible' (default) | 'none'’

Ability to capture mouse clicks, specified as one of these values:

* 'visible' — Can capture mouse clicks when visible. The Visible property must be
set to 'on' and you must click a part of the TextScatter object that has a defined
color. You cannot click a part that has an associated color property set to 'none’. If
the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the TextScatter object
responds to the click or if an ancestor does.

* 'none' — Cannot capture mouse clicks. Clicking the TextScatter object passes the
click to the object below it in the current view of the figure window. The HitTest
property of the TextScatter object has no effect.

HitTest — Response to captured mouse clicks
‘on' (default) | 'off"

Response to captured mouse clicks, specified as one of these values:

* 'on' — Trigger the ButtonDownFcn callback of the TextScatter object. If you have
defined the UIContextMenu property, then invoke the context menu.

1-267



1 Functions — Alphabetical List

+ 'off' — Trigger the callbacks for the nearest ancestor of the TextScatter object
that has a HitTest property set to 'on' and a PickableParts property value that
enables the ancestor to capture mouse clicks.

Note The PickableParts property determines if the TextScatter object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

Interruptible — Callback interruption
‘on' (default) | 'off"

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note There are two callback states to consider:

* The running callback is the currently executing callback.
* The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

If the ButtonDownFcn callback of the TextScatter object is the running callback, then
the Interruptible property determines if it another callback can interrupt it:

* 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue, such as when there is a drawnow, figure, getframe, waitfor, or pause
command.

+ If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution” (MATLAB).

+ If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.
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+ 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
"queue' (default) | 'cancel!

Callback queuing specified as 'queue’ or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

* The running callback is the currently executing callback.
* The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

If the ButtonDownFcn callback of the TextScatter object tries to interrupt a running
callback that cannot be interrupted, then the BusyAction property determines if it is
discarded or put in the queue. Specify the BusyAction property as one of these values:

* 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. This is the default behavior.

* ‘'cancel' — Discard the interrupting callback.

Creation and Deletion Control

CreateFcn — Creation callback
"' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

* Function handle
* Cell array containing a function handle and additional arguments

* Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended)
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Use this property to execute code when you create the object. Setting the CreateFcn
property on an existing object has no effect. You must define a default value for this
property, or define this property using a Name, Value pair during object creation.
MATLAB executes the callback after creating the object and setting all of its properties.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

* Created object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

* Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
"' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

* Function handle
* Cell array containing a function handle and additional arguments

e Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended)

Use this property to execute code when you delete the objectMATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

» Deleted object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

* Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.
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For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

Example: @myCallback
Example: {@myCallback,arg3}

BeingDeleted — Deletion status
"off' (default) | 'on'

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

See Also

textscatter | textscatter3 |wordcloud

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Visualize Text Data Using Word Clouds”

“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”

Introduced in R2017b
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Term Frequency-Inverse Document Frequency (tf-idf) matrix

Syntax

M
M
M

tfidf(bag)
tfidf(bag,documents)
tfidf( ,Name, Value)

Description

M = tfidf(bag) returns a Term Frequency-Inverse Document Frequency (tf-idf) matrix
based on the bag-of-words or bag-of-n-grams model bag.

M = tfidf(bag,documents) returns a tf-idf matrix for the documents in documents
by using the inverse document frequency (IDF) factor computed from bag.

M = tfidf( __ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Create Tf-idf Matrix

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0OfWords.

bag = bagO0fWords(documents)

bag =

bagOfWords with properties:

Counts:
Vocabulary:
NumWords:
NumDocuments:

[154x3092 doublel
[1x3092 string]
3092

154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);

full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507

[cNoNoNoNoNoNoNoNO]

[cNoNoNoNoNoNoNoNO)
[cNoNoNoNoNoNoNoNO]

Create tf-idf Matrix from New Documents

4.3438

[cNoNoNoNoNoNoNoNO]

NN

.2644
.5287

.2644

.2644
.2644

.2644

3.2452

[cNoNoNoNoNoNoNoNo)

3.8918

[cNoNoNoNoNoNoNoNO]

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words
model and an array of new documents.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
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separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-words model from the documents.

bagOfWords (documents)

bag

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix for an array of new documents using the inverse document
frequency (IDF) factor computed from bag.

newDocuments = tokenizedDocument ([
"what's in a name? a rose by any other name would smell as sweet."
"if music be the food of love, play on."1);

M = tfidf(bag,newDocuments)
M =
(1,7) 3.2452
(1 36) 1.2303
(2,197) 3.4275
(2,313) 3.6507
(2,387) 0.6061
(1,1205) 4.7958
(1,1835) 3.6507
(2,1917) 5.0370

1-274



tfidf

Specify TF Weight Formulas

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0OfWords.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10x10

3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918

0 0 0 0 0 4.5287 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 2.7344 0 0 0 0 0
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You can change the contributions made by the TF and IDF factors to the tf-idf matrix by
specifying the TF and IDF weight formulas.

To ignore how many times a word appears in a document, use the binary option of
'TFWeight'. Create a tf-idf matrix and set ' TFWeight' to 'binary'. View the first 10
rows and columns.

M = tfidf(bag, 'TFWeight', 'binary');
full(M(1:10,1:10))

ans = 10x10
3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 1.9459
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 2.2644 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2.2644 0 0
0 0 2.7344 0 0 0 0 0

Input Arguments

bag — Input bag-of-words or bag-of-n-grams model
bagO0fWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bag0OfNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Normalized', true specifies to normalize the frequency counts.

TFWeight — Method to set term frequency factor
"raw' (default) | 'binary' | 'log’

Method to set term frequency (TF) factor, specified as the comma-separated pair
consisting of ' TFWeight' and one of the following:

* ‘'raw' - Set the TF factor to the unchanged term counts.

* ‘'binary' - Set the TF factor to the matrix of ones and zeros where the ones indicate
whether a term is in a document.

* 'log' - Setthe TF factorto 1 + log(bag.Counts).
Example: 'TFWeight', 'binary’
Data Types: char

IDFWeight — Method to set inverse document frequency factor
‘normal' (default) | 'unary' | 'smooth' | 'max' | 'probabilistic'

Method to set inverse document frequency (IDF) factor, specified as the comma-separated
pair consisting of ' IDFWeight' and one of the following:

* 'normal' - Set the IDF factor to Log (N/NT).

* ‘'unary' - Set the IDF factor to 1.

* 'smooth' - Set the IDF factor to Log(1+N/NT).

* 'max' - Set the IDF factor to Log(1+max (NT)/NT).

* 'probabilistic' - Set the IDF factor to Log( (N-NT)/NT).

where N is the number of documents in the bag, and NT is the number of documents
containing each term which is equivalent to sum(bag.Counts).

Example: 'IDFWeight', 'smooth'

Data Types: char
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Normalized — Option to normalize term counts
false (default) | true

Option to normalize term counts, specified as the comma-separated pair consisting of
"Normalized' and true or false. If true, then the function normalizes each vector of
term counts in the Euclidean norm.

Example: 'Normalized', true

Data Types: logical

DocumentsIn — Orientation of output documents
"rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Return a matrix of frequency counts with rows corresponding to documents.

* 'columns' - Return a transposed matrix of frequency counts with columns
corresponding to documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

M — Output Term Frequency-Inverse Document Frequency matrix
sparse matrix | cell array of sparse matrices

Output Term Frequency-Inverse Document Frequency matrix, specified as a sparse matrix
or a cell array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of sparse matrices. Each element in the cell array is the tf-idf
matrix calculated from the corresponding element of bag.
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See Also
bagO0fNgrams | bag0OfWords | encode | topkngrams | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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tokenizedDocument

Array of tokenized documents

Description

A tokenized document is a document represented as a collection of words (also known as
tokens) which is used for analysis. tokenizedDocument arrays allows you to perform
word-level processing tasks such as removing words using removeWords and stemming
words using normalizeWords.

Creation

Syntax

documents = tokenizedDocument

documents = tokenizedDocument(str)

documents = tokenizedDocument(str,Name,Value)
Description

documents = tokenizedDocument creates a scalar tokenized document with no
tokens.

documents = tokenizedDocument(str) tokenizes the elements of str and returns
an array of tokenized documents.

documents = tokenizedDocument(str,Name,Value) specifies additional options
using one or more name-value pair arguments.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors | cell array of string arrays
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Input text, specified as a string array, character vector, cell array of character vectors, or
cell array of string arrays.

If the input text has not already been split into words, then str must be a string array,
character vector, cell array of character vectors, or a cell array of string scalars.

Example: ["an example of a short document";"a second short document"]
Example: 'an example of a short document'
Example: {'an example of a short document';'a second short document'}

Example: {"an example of a short document";"a second short document"}

If the input text has already been split into words, then str must be a cell array and you
must specify 'TokenizeMethod' to be 'none’.

If str contains a single document, then it must be a row of character vectors, or contain
a single string array of words. Otherwise, str must contain row vectors of strings.

Example: {'an', 'example', 'document'}

Example: {["an" "example" "of" "a" "short" "document"]}

Example: {["an" "example" "of" "short" "document"];["a" "second"

"short" "document"]}

a

Data Types: string | char | cell

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'DetectPatterns',{'email-address', 'web-address'} detects email
addresses and web addresses

TokenizeMethod — Method to tokenize documents
‘unicode’ (default) | 'none'’

Method to tokenize documents, specified as the comma-separated pair consisting of
'TokenizeMethod' and one of the following:

* 'unicode' - Tokenize input text into words. If str is a cell array, then the elements
of str must be string scalars, or character vectors.
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* 'none' - Do not tokenize the input text. str must be a cell array.

If 'TokenizeMethod' is 'none’, then the function tokenDetails returns an empty
table. To add tokens with document and sentence numbers to the table, use
addSentenceDetails.

If str contains a single document, then it must be a row of character vectors, or contain
a single string array of words. Otherwise, str must contain row vectors of strings.

Example: 'none’

DetectPatterns — Patterns of complex tokens to detect
'all' (default) | character vector | string array | cell array of character vectors

Patterns of complex tokens to detect, specified as the comma-separated pair consisting of
'DetectPatterns' and 'none’, 'all’, or a string or cell array containing one or more
of the following:

* ‘'email-address' - Detect email addresses. For example, treat user@domain.com
as a single token.

* 'web-address' - Detect web addresses. For example, treat www.mathworks. com as
a single token.

* ‘'hashtag' - Detect hashtags. For example, treat #MATLAB as a single token.
* ‘'at-mention' - Detect at-mentions. For example, treat @MathWorks as a single
token.

If DetectPatternsis 'none’, then the function does not detect any complex tokens
patterns. If DetectPatternsis 'all', then the function detects all the listed complex
token patterns.

Example: 'DetectPatterns', 'hashtag'
Example: 'DetectPatterns',{'email-address’', 'web-address'}

Data Types: char | string | cell

TopLevelDomains — Top-level domains to use for web address detection
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as the comma-separated
pair consisting of ' TopLevelDomains' and a character vector, string array, or cell array
of character vectors. By default, the function uses the output of topLevelDomains. This
option only applies if the 'DetectPatterns' is 'all' or contains 'web-address'.
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The function, by default, uses the output of topLevelDomains.
Example: 'TopLevelDomains',["com" "net" "org"]

Data Types: char | string | cell

Properties

Vocabulary — Unique words in the documents
string array

Unique words in the documents, specified as a string array. The words do not appear in
any particular order.

Data Types: string

Object Functions

Manipulation

erasePunctuation Erase punctuation from text and documents

removeWords Remove selected words from documents or bag-of-words
model

normalizeWords Reduce words to common stems using the Porter stemmer

removeEmptyDocuments Remove empty documents from tokenized document array,
bag-of-words model, or bag-of-n-grams model

addSentenceDetails Add sentence numbers to documents
lower Convert documents to lowercase

upper Convert documents to uppercase

plus Append documents

replace Find and replace substrings in documents
docfun Apply function to words in documents
regexprep Replace text in words of documents using regular expression
Exploration

tokenDetails Details of tokens in tokenized document array
doclength Length of documents in document array

context Search documents for word occurrences in context
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Export

writeTextDocument Write documents to text file

Conversion

joinwords Convert documents to string by joining words
doc2cell  Convert documents to cell array of string vectors
string Convert scalar document to string vector

Examples

Create Tokenized Documents

Create tokenized documents from a string array.
str = [

"an example of a short sentence"

"a second short sentence"]

str = 2x1 string array
"an example of a short sentence"
"a second short sentence"

documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Detect Complex Tokens

Create a tokenized document of the string str. By default, the function treats the hashtag
"#MATLAB" and the web address "https://www.mathworks.com/help" as single
tokens.
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str = "Learn how to analyze text in #MATLAB, see https://www.mathworks.com/help/";
document = tokenizedDocument(str)

document =
tokenizedDocument:

10 tokens: Learn how to analyze text in #MATLAB , see https://www.mathworks.com/hel

To detect hashtags only as complex tokens, specify the 'DetectPatterns' option to be
"hashtag' only. The function then tokenizes the web address "https://
www . mathworks.com/help" into multiple tokens.

document = tokenizedDocument(str, 'DetectPatterns', 'hashtag"')

document =
tokenizedDocument:

21 tokens: Learn how to analyze text in #MATLAB , see https : / / www . mathworks

Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"]);
newDocuments = removeWords (documents, stopWords)

newDocuments =
2x1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence
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Stem Words in Document Array

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
"a strongly worded collection of words"
"another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
2x1 tokenizedDocument:

(1,1) 6 tokens: a strongli word collect of word
(2,1) 4 tokens: anoth collect of word

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

textData = split(str,newline);
documents = tokenizedDocument (textData);

Search for the word "life".

tbl = context(documents,"life");

head (tbl)
ans=8x3 table
Context Document Word
"consumst thy self single life ah thou issueless shalt " 9 10
"ainted counterfeit lines life life repair times pencil" 16 35
"d counterfeit lines life life repair times pencil pupi” 16 36
" heaven knows tomb hides life shows half parts write b" 17 14
"he eyes long lives gives life thee " 18 69
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"tender embassy love thee
"ves beauty though lovers
"s shorn away live second

life
life
life

View the occurrences in a string array.

tbl.

ans

Context

= 23x1 string array

"consumst thy self single
"ainted counterfeit lines
"d counterfeit lines life
" heaven knows tomb hides
"he eyes long lives gives
"tender embassy love thee
"ves beauty though lovers
"s shorn away live second
"e rehearse let love even
"st bail shall carry away
"art thou hast lost dregs
! thoughts food
"tten name hence immortal
" beauty mute others give
"ve life bring tomb lives
" steal thyself away term
"fe thou art assured mine
" fear worst wrongs least
"anst vex inconstant mind
" fame faster time wastes
"ess harmful deeds better
"ate hate away threw savd
" many nymphs vowd chaste

life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life
life

“Prepare Text Data for Analysis”

made four two alone sink"
beauty shall black lines"
second head ere beautys "

ah thou issueless shalt "
life repair times pencil"
repair times pencil pupi"
shows half parts write b"
thee !
made four two alone sink"
beauty shall black lines"
second head ere beautys "
decay lest wise world 1lo"
hath line interest memor"
prey worms body dead cow"
sweetseasond showers gro"
shall though once gone w"
bring tomb lives life fa"
fair eyes poets praise d"
thou art assured mine 1i"
longer thy love stay dep"
hath end better state be"
thy revolt doth lie o ha"
thou preventst scythe cr"
provide public means pub"
saying !
keep came tripping maide"

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”

“Analyze Text Data Using Multiword Phrases”

“Classify Text Data Using Deep Learning”
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See Also

addSentenceDetails | bag0fWords | context | doc2cell | docfun | doclength |
erasePunctuation | joinwords | lower | normalizeWords | plus | regexprep |
removeEmptyDocuments | removeWords | replace | string | tokenDetails |
topLevelDomains | upper | writeTextDocument

Topics

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases’
“Classify Text Data Using Deep Learning”

J

Introduced in R2017b
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tokenDetails

Details of tokens in tokenized document array

Syntax

details = tokenDetails(documents)

Description

details = tokenDetails(documents) returns a table of token details for the tokens

in documents.

Examples

View Token Details of Documents

Create a tokenized document from the text in exampleSonnetl. txt.

filename = "exampleSonnetl.txt";
str = extractFileText(filename);
document = tokenizedDocument(str);

View the token details of the first few tokens.

details = tokenDetails(document);
head(details)

ans=8x4 table

Token DocumentNumber LineNumber Type
"From" 1 1 letters
"fairest" 1 1 letters
"creatures" 1 1 letters
"we" 1 1 letters

1-289



1 Functions — Alphabetical List

"desire" 1 1 letters
"increase" 1 1 letters
o 1 1 punctuation
"That" 1 2 letters
View the token details of the second line of the document.
details(details.LineNumber == 2,:)
ans=8x4 table
Token DocumentNumber LineNumber Type
"That" 1 2 letters
"thereby" 1 2 letters
"beauty's" 1 2 other
"rose" 1 2 letters
"might" 1 2 letters
"never" 1 2 letters
"die" 1 2 letters
o 1 2 punctuation

Add Sentence Details to Documents

Create a tokenized document from the text in exampleSonnetl. txt.

filename = "exampleSonnetl.txt";
str = extractFileText(filename);
document = tokenizedDocument(str)

document =
tokenizedDocument:

124 tokens: From fairest creatures we desire increase , That thereby beauty's rose 1

View the token details of the first 15 tokens.

details = tokenDetails(document);
head(details, 15)

ans=15x4 table
Token DocumentNumber LineNumber Type
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"From" 1 1 letters
"fairest" 1 1 letters
"creatures" 1 1 letters
"we" 1 1 letters
"desire" 1 1 letters
"increase" 1 1 letters

o 1 1 punctuation
"That" 1 2 letters
"thereby" 1 2 letters
"beauty's" 1 2 other
"rose" 1 2 letters
"might" 1 2 letters
"never" 1 2 letters
"die" 1 2 letters

o 1 2 punctuation

Add sentence details to the documents using addSentenceDetails. This function adds
the sentence numbers to the table returned by tokenDetails. View the updated token
details of the first 15 tokens.

document = addSentenceDetails(document);
details = tokenDetails(document);

head(details, 15)
ans=15x5 table
Token DocumentNumber SentenceNumber LineNumber Type

"From" 1 1 1 letters
"fairest" 1 1 1 letters
"creatures" 1 1 1 letters
"we" 1 1 1 letters
"desire" 1 1 1 letters
"increase" 1 1 1 letters
o 1 1 1 punctuation
"That" 1 1 2 letters
"thereby" 1 1 2 letters
"beauty's" 1 1 2 other
"rose" 1 1 2 letters
"might" 1 1 2 letters
"never" 1 1 2 letters
"die" 1 1 2 letters
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Input Arguments

documents — Input documents
tokenizedDocument array

1 2 punctuation

Input documents, specified as a tokenizedDocument array.

Output Arguments

details — Table of token details

table

Table of token details. T has the following variables:

Name Description

Token Token text, specified as a string scalar.

DocumentNumber Index of document that the token belongs
to.

LineNumber Line number of token in document.
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Name

Description

Type

The type of token, specified as one of the
following:

e 'letters' - consists of letter
characters only

* 'digits' - consists of digits only

e 'punctuation' - consists of
punctuation and symbol characters only

* 'email-address' - detected email
address

e 'web-address' - detected web
address

* ‘'hashtag' - detected hashtag (starts
with "#" character followed by a letter)

e 'at-mention' - detected at-mention
(starts with "@" character)

e ‘'other' - does not belong to above
types

SentenceNumber

Sentence number of token in document. To
get this variable, you must first use
addSentenceDetails.

If the input documents were tokenized with the 'TokenizeMethod' option set to
‘none’, then the function returns an empty table. To add tokens with document and
sentence numbers to the table, use addSentenceDetails.

See Also

addSentenceDetails | context | erasePunctuation | removeWords |

tokenizedDocument

Introduced in R2018a
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topkwords

Most important words in bag-of-words model or LDA topic

Syntax

tbl = topkwords(bag)

tbl = topkwords(bag,k)

tbl = topkwords(ldaMdl,k, topicIdx)
tbl = topkwords(  ,Name,Value)
Description

tbl = topkwords(bag) returns a table of the five words with the largest word counts
in bag-of-words model bag.

tbl = topkwords(bag, k) returns a table of the k words with the largest word counts.

tbl = topkwords(ldaMdl, k, topicIdx) returns a table of the k words with the
highest probabilities in the latent Dirichlet allocation (LDA) topic topicIdx in the LDA
model ldaMdl.

tbl = topkwords( ,Name, Value) specifies additional options using one or more
name-value pair arguments.

Examples

Most Frequent Words of Bag-of-Words Model
Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
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separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text

into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bagOfWords.
bag = bagOfWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Find the top five words.
T = topkwords(bag);

Find the top 20 words in the model.

k = 20;

T = topkwords(bag, k)

T=20x2 table

Word Count

"thy" 281
"thou" 234
"Tove" 162
"thee" 161
"doth" 88
"mine" 63
"shall" 59
"eyes" 56
"sweet" 55
"time" 53
"beauty" 52
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"nor" 52
"art" 51
"yet" 51
"o" 50
"heart" 50

Highest Probability Words of LDA Topic
Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default’.

rng('default')

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0OfWords.
bag = bag0fWords(documents);
Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0747008 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic

| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations

| 0 | 0.09 | | 1.159e+03 | 5.000 |

| 1 | 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 |
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| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 |
| 3 0.08 | 3.4597e-03 | 7.602e+02 | 5.000 |
| 4 | 0.07 | 3.4662e-03 | 7.430e+02 | 5.000 |
| 5 | 0.08 | 2.9259e-03 | 7.288e+02 | 5.000 |
| 6 | 0.08 | 6.4180e-05 | 7.291e+02 | 5.000 |

[ocNoNoNOoNO]

mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [
Vocabulary: [
FitInfo: [

1x20 double]
154x20 doublel]
3092x20 double]
1x3092 string]
1x1 struct]

Find the top 20 words of the first topic.
k = 20;

topicldx = 1;

T = topkwords(mdl,k, topicIdx)

T=20x2 table

Word Score
"eyes" 0.11155
"beauty" 0.05777
"hath" 0.055778
"still" 0.049801
"true" 0.043825
"mine" 0.033865
"find" 0.031873
"black" 0.025897
"look" 0.023905
"tis" 0.023905
"kind" 0.021913
"seen" 0.021913
"found" 0.017929
"sin" 0.015937
"three" 0.013945
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"golden" 0.0099608

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
T = topkwords(mdl,k,topicIdx, 'Scaling', 'inversemean')

T=20x2 table

Word Score
"eyes" 1.2718
"beauty" 0.59022
"hath" 0.5692
"still" 0.50269
"true" 0.43719
"mine" 0.32764
"find" 0.32544
"black" 0.25931
"tis" 0.23755
"look" 0.22519
"kind" 0.21594
"seen" 0.21594
"found" 0.17326
"sin" 0.15223
"three" 0.13143
"golden" 0.090698

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(T.Word,T.Score);
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find
beauty -

mine =~ ~.seen
tIs blaCk
fnundey kind
still nath

look

three

sin

Input Arguments

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bag0fWords object.

k — Number of words
nonnegative integer

Number of words to return, specified as a positive integer.
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Example: 20

ldaMdl — Input LDA model
ldaMode'l object

Input LDA model, specified as an LdaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Scaling', 'inversemean' specifies to use inverse mean scaling on the topic
word probabilities.

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.

Only has an effect if the input data is a bag-of-words model.
Data Types: logical

Scaling — Scaling to apply to topic word probabilities
'none' (default) | 'inversemean'

Scaling to apply to topic word probabilities, specified as the comma-separated pair
consisting of 'Scaling' and one of the following:

* 'none' - Return posterior word probabilities.

* ‘'inversemean' - Normalize the posterior word probabilities per topic by the
geometric mean of the posterior probabilities for this word across all topics. The
function uses the formula Phi.*(log(Phi)-mean(log(Phi), 1)), where Phi
corresponds to ldaMdl.TopicWordProbabilities.
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Only has an effect if the input data is an LDA model.
Example: 'Scaling', 'inversemean'

Data Types: char

Output Arguments

tbl — Table of top words
table | cell array of tables

Table of top words sorted in order of importance or a cell array of tables.

When the input is a bag-of-words model, the table has the following columns:

Word Word specified as a string

Count Number of times the word appears in the bag-of-words model

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of tables. Each element in the cell array is a table containing
the top words of the corresponding element of bag.

When the input is an LDA model, the table has the following columns:

Word Word specified as a string

Score Word probability for the given LDA topic

Tips

* To find the most frequently seen n-grams in a bag-of-n-grams model, use topkngrams.

See Also
bagO0fWords | encode | ldaModel | tfidf | topkngrams

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2017b
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topkngrams

Most frequent n-grams

Syntax

tbl
tbl
tbl

topkngrams (bag)
topkngrams (bag, k)
topkngrams( ___ ,Name,Value)

Description

tbl = topkngrams(bag) returns a table listing the five most frequently seen n-grams
in the bag-of-n-grams model bag.

tbl = topkngrams(bag, k) lists the k most frequently seen n-grams in the bag-of-n-
grams model bag.

tbl = topkngrams(  ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Most Frequent Bigrams of Bag-of-N-Grams Model
Create a table of the most frequent bigrams of a bag-of-n-grams model.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument (textData);

Create a bag-of-n-grams model.
bag = bag0fNgrams(documents)

bag =
bagOfNgrams with properties:

Counts: [154x8799 double]
Vocabulary: [1x3092 string]
Ngrams: [8799x2 string]
NgramLengths: 2
NumNgrams: 8799
NumDocuments: 154

Find the top 5 bigrams.
tbl = topkngrams(bag)
tbl=5x3 table

Ngram Count NgramLength
"thou" "art" 34 2
"mine" "eye" 15 2
"thy" "self" 14 2
"thou" "dost" 13 2
"mine" "own" 13 2

Find the top 10 bigrams.
tbl = topkngrams(bag,10)
tbl=10x3 table

Ngram Count NgramLength
"thou" "art" 34 2
"mine" "eye" 15 2
"thy" "self" 14 2
"thou" "dost" 13 2
"mine" “own" 13 2
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"thy" "sweet" 12 2
"thy" "love" 11 2
"dost" "thou" 10 2
"thou" "wilt" 10 2
"love" "thee" 9 2

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and
trigrams), specify 'NgramLengths' to be the vector [2 3].

bag = bag0fNgrams(documents, 'NgramLengths',[2 3])

bag =
bag0OfNgrams with properties:

Counts: [154x18022 double]
Vocabulary: [1x3092 string]
Ngrams: [18022x3 string]
NgramLengths: [2 3]
NumNgrams: 18022
NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).
topkngrams (bag, 10, 'NGramLengths',2)

ans=10x3 table
Ngram Count NgramLength
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"thou"
"mine"
Ilthyll

"thou"
"mine"
Ilthyll

Ilthyll

"dost"
"thou"
"Tove"

"art"

"eye"

"self"
"dost"
"own"

"sweet
"Tlove"
"thou"
"wilt"
"thee"

34
15
14
13
13
12
11
10
10

NNNNNNNNNN

View the 10 most common n-grams of length 3 (trigrams).

topkngrams(bag, 10, 'NGramLengths',3)

ans=10x3 table

Ngram Count NgramLength
"thy" "sweet" "self" 4 3
"why" "dost" "thou" 4 3
"thy" "self" "thy" 3 3
"thou" "thy" "self" 3 3
"mine" "eye" "heart" 3 3
"thou" "shalt" "find" 3 3
"fair" "kind" "true" 3 3
"thou" "art" "fair" 2 3
"love" "thy" "self" 2 3
"thy" "self" "thou" 2 3

Input Arguments

bag — Input bag-of-n-grams model
bag0fNgrams object

Input bag-of-n-grams model, specified as a bag0fNgrams object.

k — Number of n-grams

nonnegative integer
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Number of n-grams to return, specified as a positive integer.

Example: 20

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'NgramLengths', [2 3] specifies to return the top bigrams and trigrams.

NgramLengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as the comma separated pair consisting of 'NgramLengths'
and a positive integer or a vector of positive integers.

If you specify NgramLengths, then the function returns n-grams of these lengths only. If
you do not specify NgramLengths, then the function returns the top n-grams regardless
of length.

Example: [1 2 3]

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of ' ForceCellOutput' and true or false.

Data Types: logical

Output Arguments

tbl — Table of top n-grams
table | cell array of tables

Table of top n-grams sorted in order of frequency or a cell array of tables.

The table has the following columns:
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Ngram N-gram specified as a string vector
Count Number of times the n-gram appears in the bag-of-n-grams model.
NgramLength Length of the n-gram.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of tables. Each element in the cell array is a table containing
the top n-grams of the corresponding element of bag.

See Also
bagOfNgrams | bag0fWords | encode | tfidf | topkwords

Introduced in R2018a
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topLevelDomains

List of top-level domains

Syntax

domains = topLevelDomains

Description

domains = toplLevelDomains returns a string array of common top-level internet

domain names which you can use to tokenize documents containing URLs.

Examples

List of Top-Level Domains

View list of top-level domains usually used to detect web addresses in strings. Reshape

the output for readability.

domains = toplLevelDomains;
reshape(domains, [], 5)

ans = 51x5 string array

Ilcomll Ilckll Ilhnll
Iledull IIC'LII Ilhr.ll
n n n n n n
gov cm ht
Ilintll Ilcnll Ilhull
Ilmi'Lll IICOII Ilidll
Ilnetll Ilcrll Iliell
Ilorgll Ilcull Ili'l-ll
Ilinfoll IICVII Ilimll
IIaCII IICWII Ilinll
Iladll IICXII Ilioll
n n n n n g n
ae C i
Ilafll IICZII IIi?.II

"mp"
"mq"
s
"ms "
e
"mu"
"y "
mw
mx
"my "
"z "
"na

||Si||
"Sj "
"Sk"
||S‘L||
||Sm||
||Sn||
||SO||
||SI,.||
"St"
||Su||
||SV||
||SX||
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||ag||
||ai||
||am||
||a0||
||aq||
||ar||
||aS n
“at n
||au||
llawll
||aX||
||az n
||ba||
||bb||
||bd||
||be||
||bf||
“bg"
||bh||
||bi||
“bj n
“bl n
||bm||
||bn||
||b0||
||br||
||bS n
“bt n
||bV||
llbwll
||by||
“bz n
||Ca||
||CC||
||Cd||
||Cf||
“Cg"
||Ch||
||Ci||

||de||
"dj n
||dk||
||dm||
||do||
||dZ||
||eC||
||ee||
||eg n
||er||
||es||
"et"
||eu||
||fi||
"fj n
"fk"
||fm||
||fo||
||fr||
||ga||
||gd||
||ge||
||gf||
||gg||
||gh||
||gi||
||gl||
||gm||
||gn||

||g r.||
||gs n
"gt n
||gu n
"gW"
||gy||
||hk||
n hmll

"iS "
"it "
" ] ell
" ] mll
" ] OII
" ] pll
" kell
" kg "
" kh "
" kill
" kmll
" kpll
" krll
" kwll
" kyll
" kZ "
||1a "
||1b||
||1C "
Illi"
||1k||
||1 I..||
"15 "
||1t "
||1u "
||1V||
||1y||
||ma "
||mC "
"md "
||me||
"mf "
||mg "
"mh "
||mk||
||m‘|- "
||mm||
||mn "
||m0||

||nc||
||ne||
||nf||
||ng||
||ni||
“nl”
||n0||
||np||
||nr.||
||nu||
||nZ||
||0m||
||pa||
||pe||
||pf||
||pg||
||ph||
||pk||
“pl"
||pm||
||pn||
||pr.||
||pS||
||p.t||
llpwll
||qa||
n rell
n roll
n rSII
||ru||
rw
||Sa||
||Sb||
||Sc||
||Sd||
||Se||
“Sg"
||Sh||

ngyn
g
ngen
Iltdll
Iltfll
g
Ilthll
Iltj n
Iltkll
IIt'LII
et
o
ngoh
ni
g
gy
"y
g
"uah
"ug"
Ilukll
"um®
nygh
"y
nyzh
nyah
nyen
nyeh
"vg"
Ilvill
nynt
nyyt
Ilwfll
"ws
nyen
nyte
nygh
-
"zw
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See Also

bagOfWords | eraseURLs | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a
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trainWordEmbedding

Train word embedding

Syntax

emb
emb
emb

trainWordEmbedding(filename)
trainWordEmbedding(documents)
trainWordEmbedding(  ,Name,Value)

Description

emb = trainWordEmbedding(filename) trains a word embedding using the training
data stored in the text file filename. The file is a collection of documents stored in UTF-8
with one document per line and words separated by whitespace.

emb = trainWordEmbedding(documents) trains a word embedding using documents
by creating a temporary file with writeTextDocument, and then trains an embedding
using the temporary file.

emb = trainWordEmbedding(  ,Name,Value) specifies additional options using
one or more name-value pair arguments. For example, 'Dimension', 50 specifies the
word embedding dimension to be 50.

Examples

Train Word Embedding from File

Train a word embedding of dimension 20 using the example text file
exampleSonnetsDocuments. txt. This file contains preprocessed versions of
Shakespeare's sonnets, with one sonnet per line and words separated by a space.

filename = "exampleSonnetsDocuments.txt";
emb = trainWordEmbedding(filename)
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Training: 100% Loss: 2.66767 Remaining time: O hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x502 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)
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Train Word Embedding from Documents

Train a word embedding using the example data sonnetsPreprocessed. txt. This file
contains preprocessed versions of Shakespeare's sonnets. The file contains one sonnet
per line, with words separated by a space. Extract the text from
sonnetsPreprocessed. txt, split the text into documents at newline characters, and
then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 2.74016 Remaining time: O hours 0 minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Visualize the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)
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Specify Word Embedding Options

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Specify the word embedding dimension to be 50. To reduce the number of words
discarded by the model, set 'MinCount' to 3. To train for longer, set the number of
epochs to 10.

emb = trainWordEmbedding(documents,
'Dimension',50,
'MinCount', 3,
"NumEpochs',10)

Training: 100% Loss: 0 Remaining time: O hours O minutes.

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x750 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb, words);
XY = tsne(V);
textscatter(XY,words)
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Input Arguments

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'Dimension', 50 specifies the word embedding dimension to be 50.

Dimension — Dimension of word embedding
100 (default) | nonnegative integer

Dimension of the word embedding, specified as the comma-separated pair consisting of
'Dimension' and a nonnegative integer.

Example: 300

Window — Size of context window
5 (default) | nonnegative integer

Size of the context window, specified as the comma-separated pair consisting of
'Window' and a nonnegative integer.

Example: 10

Model — Model
'skipgram' (default) | 'cbow'

Model, specified as the comma-separated pair consisting of 'Model' and 'skipgram'
(skip gram) or 'cbow' (continuous bag-of-words).

Example: 'cbow'

DiscardFactor — Factor to determine word discard rate
le-4 (default) | positive scalar

Factor to determine the word discard rate, specified as the comma-separated pair
consisting of 'DiscardFactor' and a positive scalar. The function discards a word from
the input window with probability 1-sqrt(t/f) - t/f where fis the unigram
probability of the word, and t is DiscardFactor. Usually, DiscardFactor is in the
range of 1e-3 through le-5.
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Example: 0.005

LossFunction — Loss function
'ns' (default) | 'hs' | 'softmax'

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and
'ns' (negative sampling), 'hs' (hierarchical softmax), or 'softmax' (softmax).

Example: 'hs'

NumNegativeSamples — Number of negative samples
5 (default) | positive integer

Number of negative samples for the negative sampling loss function, specified as the
comma-separated pair consisting of ' NumNegativeSamples' and a positive integer. This
option is only valid when LossFunctionis 'ns"'.

Example: 10

NumEpochs — Number of epochs
5 (default) | positive integer

Number of epochs for training, specified as the comma-separated pair consisting of
"NumEpochs' and a positive integer.

Example: 10

MinCount — Minimum count of words
5 (default) | positive integer

Minimum count of words to include in the embedding, specified as the comma-separated
pair consisting of 'MinCount' and a positive integer. The function discards words that
appear fewer than MinCount times in the training data from the vocabulary.

Example: 10

NGramRange — Inclusive range for subword n-grams
[3 6] (default) | vector of two nonnegative integers

Inclusive range for subword n-grams, specified as the comma-separated pair consisting of
'"NGramRange' and a vector of two nonnegative integers [min max]. If you do not want
to use n-grams, then set 'NGramRange' to [0 0].

Example: [5 10]
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InitialLearnRate — Initial learn rate
0.05 (default) | positive scalar

Initial learn rate, specified as the comma-separated pair consisting of
'InitiallLearnRate' and a positive scalar.

Example: 0.01

UpdateRate — Rate for updating learn rate
100 (default) | positive integer

Rate for updating the learn rate, specified as the comma-separated pair consisting of
"UpdateRate’ and a positive integer. The learn rate decreases to zero linearly in steps
every N words where N is the UpdateRate.

Example: 50

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

* 0 - Do not display verbose output.
* 1 - Display progress information.

Example: 'Verbose',0

Output Arguments

emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

Tips

The training algorithm uses the number of threads given by the function
maxNumCompThreads. To learn how to change the number of threads used by MATLAB,
see maxNumCompThreads.
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See Also

fastTextWordEmbedding | ismember | readWordEmbedding | tokenizedDocument |
vec2word | word2vec | wordEmbedding | writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2017b
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transform

Transform documents into lower-dimensional space

Syntax

dscores = transform(lsaMdl,documents)
dscores = transform(lsaMdl,bag)
dscores = transform(lsaMdl, counts)
dscores = transform(ldaMdl,documents)
dscores = transform(ldaMdl,bag)
dscores = transform(ldaMdl, counts)
dscores = transform(__ ,Name,Value)
Description

dscores = transform(lsaMdl,documents) transforms documents into the semantic
space of the latent semantic analysis (LSA) model 1saMd1l.

dscores = transform(lsaMdl,bag) transforms documents represented by the bag-
of-words or bag-of-n-grams model bag into the semantic space of the LSA model 1saMdl.

dscores = transform(lsaMdl, counts) transforms documents represented by the
matrix of word counts into the semantic space of the LSA model 1saMd1.

dscores = transform(ldaMdl,documents) transforms documents into the latent
Dirichlet allocation (LDA) topic probability space of LDA model 1daMdl. The rows of
dscores are the topic mixture representations of the documents.

dscores = transform(ldaMdl,bag) transforms documents represented by the bag-
of-words or bag-of-n-grams model bag into the LDA topic probability space of LDA model
ldaMdl.

dscores = transform(ldaMdl, counts) transforms documents represented by the
matrix of word counts into the LDA topic probability space of LDA model ldaMd1l.
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dscores = transform( _ ,Name,Value) specifies additional options using one or
more name-value pair arguments. These name-value pairs only apply if the input model is
an ldaModel object.

Examples

Transform Documents into LSA Semantic Space

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);

documents = tokenizedDocument (textData);

Create a bag-of-words model using bag0fWords.
bag = bag0fWords(documents)

bag =
bag0fWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LSA model with 20 components.

numCompnents = 20;
mdl = fitlsa(bag,numCompnents)

mdl =
lsaModel with properties:

NumComponents: 20

ComponentWeights: [1x20 double]
DocumentScores: [154x20 double]
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WordScores: [3092x20 doublel]
Vocabulary: [1x3092 string]
FeatureStrengthExponent: 2

Use transform to transform the first 10 documents into the semantic space of the LSA
model.

dscores = transform(mdl,documents(1:10))

dscores = 10x20

5.6059 -1.8559 0.9286 -0.7086 -0.4652 -0.8340 -0.6751 0.0611
7.3069 -2.3578 1.8359 -2.3442 -1.5776 -2.0310 -0.7948 1.3411
7.1056 -2.3508 -2.8837 -1.0688 -0.3462 -0.6962 -0.0334 -0.0472
8.6292 -3.0471 -0.8512 -0.4356 -0.3055 0.4671 1.4219 -0.8454
1.0434 1.7490 0.8703 -2.2315 -1.1221 0.2848 2.0522 -0.6975
6.8358 -2.0806 -3.3798 -1.0452 -0.2075 2.0970 0.4477 0.2080
2.3847 0.3923 -0.4323 -1.5340 0.4023 -1.0396 1.0326 0.3776
3.7925 -0.3941 -4.4610 -0.4930 0.4651 0.3404 0.5493 0.1470
4.6522 0.7188 -1.1787 -0.8996 0.3360 0.4531 0.1935 0.3328
8.8218 -0.8168 -2.5101 1.1197 -0.8673 -1.2336 -0.0768 0.1943

Transform Documents into LDA Topic Mixtures

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default’.

exampleFolder = genpath(fullfile(matlabroot, 'examples', 'textanalytics'));

addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)
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bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]
NumWords: 3092
NumDocuments: 154

Fit an LDA model with five topics.

numTopics = 5;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.065897 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic

[ | iteration | change in | perplexity | concentration | concentration

[ | (seconds) | log(L) | [ | iterations

| 0 | 0.02 | | 1.212e+03 | 1.250 | 0 |
| 1| 0.04 | 1.2300e-02 | 1.112e+03 | 1.250 | 0 |
| 2 | 0.03 | 1.3254e-03 | 1.102e+03 | 1.250 | 0 |
| 3| 0.03 | 2.9402e-05 | 1.102e+03 | 1.250 | 0 |
mdl =

ldaModel with properties:

NumTopics: 5
WordConcentration: 1
TopicConcentration: 1.2500
CorpusTopicProbabilities: [0.2000 0.2000 0.2000 0.2000 0.2000]
DocumentTopicProbabilities: [154x5 double]
TopicWordProbabilities: [3092x5 double]
Vocabulary: [1x3092 string]
FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities. You can
visualize these mixtures using stacked bar charts. View the topic mixtures of the first 10
documents.

topicMixtures = transform(mdl,documents(1:10));
figure
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barh(topicMixtures, 'stacked")

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics),
'Location', 'bestoutside')

Topic Mixtures

[ ITopic 3
I Topic 4

0.2 0.4 0.6 0.8 1

Topic Probability

Remove the example folder from the path using rmpath.

rmpath (exampleFolder)
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Transform Word Count Matrix into LDA Topic Mixtures

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1x2

154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to
'default’.

rng('default"')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0795471 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.05 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.07 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.07 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.08 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5 | 0.06 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.07 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:
NumTopics: 20
WordConcentration: 1
TopicConcentration: 5
CorpusTopicProbabilities: [
DocumentTopicProbabilities: [
TopicWordProbabilities: [
Vocabulary: [

1x20 double]
154x20 double]
3092x20 double]
1x3092 string]
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FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities.
topicMixtures = transform(mdl,counts(1:10,:))

topicMixtures = 10x20

0.0167 0.0035 0.1645 0.0977 0.0433 0.0833 0.0987 0
0.0711 0.0544 0.0116 0.0044 0.0033 0.0033 0.0431 0
0.0293 0.0482 0.1078 0.0322 0.0036 0.0036 0.0464 0
0.0055 0.0962 0.2403 0.0033 0.0296 0.1613 0.0164 0
0.0341 0.0224 0.0341 0.0645 0.0948 0.0038 0.0189 0
0.0445 0.0035 0.1167 0.0034 0.0446 0.0583 0.1268 0
0.1720 0.0764 0.0090 0.0180 0.0325 0.1213 0.0036 0
0.0043 0.0033 0.1248 0.0033 0.0299 0.0033 0.0690 0
0.0412 0.0387 0.0555 0.0165 0.0166 0.0433 0.0033 0
0.0362 0.0035 0.1117 0.0304 0.0034 0.1248 0.0439 0

Input Arguments

lsaMdl — Input LSA model
lsaModel object

Input LSA model, specified as an 1saModel object.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an 1daModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a tokenizedDocument, then it must be
a column vector. If documents is a string array or a cell array of character vectors, then
it must be a row of the words of a single document.

.0033
.0053
.0036
.0955
.1099
.0169
.0036
.1699
.0038
.0340

loNoNoNoNoNoNoNoNoNO]
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Tip To ensure that the function does not discard useful information, you must first
preprocess the input documents using the same steps used to preprocess the documents
used to train the model.

bag — Input model
bagO0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' tobe 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN, ValueN.

Example: 'IterationLimit', 200 sets the iteration limit to 200.

Note These name-value pairs only apply if the input model is an 1daModel object.

DocumentsIn — Orientation of documents
"rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

* 'rows' - Input is a matrix of word counts with rows corresponding to documents.
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* 'columns' - Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn', 'columns’, then you might experience a significant reduction
in optimization-execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

Example: 'IterationLimit', 200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
"LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.

Example: 'LogLikelihoodTolerance',0.001

Output Arguments

dscores — Output document scores
matrix

Output document scores, returned as a matrix of score vectors.

See Also
bagOfWords | fitlda | fitlsa | ldaModel | logp | LsaModel | predict | wordcloud

Topics
“Analyze Text Data Using Topic Models”
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“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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upper

Convert documents to uppercase

Syntax

newDocuments = upper(documents)

Description

newDocuments = upper(documents) converts each lowercase character in the input
documents to the corresponding uppercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Uppercase

Convert all lowercase characters in an array of documents to uppercase.

documents = tokenizedDocument ([
"An Example of a Short Sentence"
"A Second Short Sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: An Example of a Short Sentence
(2,1) 4 tokens: A Second Short Sentence

newDocuments = upper(documents)

newDocuments =
2x1 tokenizedDocument:
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(1,1) 6 tokens: AN EXAMPLE OF A SHORT SENTENCE
(2,1) 4 tokens: A SECOND SHORT SENTENCE

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also

bagO0fWords | docfun | Llower | normalizeWords | regexprep | replace |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1-333



1 Functions — Alphabetical List

1-334

vec2word

Map embedding vector to word

Syntax

words = vec2word(emb,M)

[words,dist] = vec2word(emb,M)
vec2word(emb,M, k)

vec2word(  ,'Distance’',distance)

Description

words = vec2word(emb,M) returns the closest words to the embedding vectors in the
rows of M.

[words,dist] = vec2word(emb,M) returns the closest words to the embedding
vectors in M, and returns the distances dist of each to their source vectors.

vec2word(emb,M, k) returns the top k closest words.

vec2word ( , 'Distance',distance) specifies the distance metric.

Examples

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:
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Dimension: 50
Vocabulary: [1x9999 string]

Map the words "king", "man", and "woman" to vectors using word2vec.
king = word2vec(emb, "king");

man = word2vec(emb, "man");
woman = word2vec(emb, "woman");

Map the vector king - man + woman to a word using vec2word.
word = vec2word(emb,king - man + woman)

word =
“queen”

Find Closest Words to Vector
Find the top five closest words to a word embedding vector and their distances.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Map the words "king", "man", and "woman" to vectors using word2vec.
king = word2vec(emb, "king");

man = word2vec(emb, "man");

woman = word2vec(emb, "woman");

Map the vector king - man + woman to a word using vec2word. Find the top five
closest words using the Euclidean distance metric.

1-335



1 Functions — Alphabetical List

Distance
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k = 5;
M = king - man + woman;
[words,dist] = vec2word(emb,M,k,
'Distance', 'euclidean');

Plot the words and distances in a bar chart.

figure;

bar(dist)

xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")

Distances to Vector

queen king princess prince monarch
Word
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Input Arguments

emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

M — Word embedding vectors
matrix

Word embedding vectors, specified as a matrix. Each row of M is a word embedding
vector. M must have emb.Dimension columns.

distance — Distance metric
'cosine' (default) | 'euclidean’

Distance metric, specified as 'cosine' or 'euclidean’.

Output Arguments

words — Output words
string vector

Output words, returned as a string vector.

dist — Distance of words to source vectors
vector

Distance of words to their source vectors, returned as a vector.

See Also

fastTextWordEmbedding | ismember | readWordEmbedding | trainWordEmbedding
| word2vec | wordEmbedding | writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”
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Introduced in R2017b
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word2vec

Map word to embedding vector

Syntax

M = word2vec(emb,words)

Description

M = word2vec(emb,words) returns the embedding vectors of words in the embedding
emb. If a word is not in the embedding vocabulary, then the function returns a row of
NaNs.

Examples

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Map the words "king", "man", and "woman" to vectors using word2vec.
king = word2vec(emb, "king");

man = word2vec(emb, "man");
woman = word2vec(emb, "woman") ;
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Map the vector king - man + woman to a word using vec2word.

word vec2word(emb,king - man + woman)

word =
“queen"

Input Arguments

emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.

Data Types: string | char | cell

Output Arguments

M — Matrix of word embedding vectors
matrix

Matrix of word embedding vectors. Each row of M corresponds to a word embedding
vector for the corresponding entry in words. M has emb.Dimension columns.

See Also

fastTextWordEmbedding | ismember | readWordEmbedding | trainWordEmbedding
| vec2word | wordEmbedding | writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
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“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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wordcloud

Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA
model

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays, and creating word
clouds from bag-of-words models, bag-of-n-gram models, and LDA topics. If you do not
have Text Analytics Toolbox installed, see wordcloud (MATLAB).

Syntax

wc = wordcloud(str)

wc = wordcloud(tbl,wordVar,sizeVar)
wc = wordcloud(words,sizeData)

wc = wordcloud(C)

wc = wordcloud(bag)

wc = wordcloud(ldaMdl, topicIdx)

wc = wordcloud(parent, )

wc = wordcloud(  ,Name,Value)
Description

wc = wordcloud(str) creates a word cloud chart by tokenizing and preprocessing the
text in str, and then displaying the words with sizes corresponding to the word
frequency counts.

wc = wordcloud(tbl,wordVar,sizeVar) creates a word cloud chart from the table
tbl. The variables wordVar and sizeVar in the table specify the words and word sizes
respectively.

wc = wordcloud(words,sizeData) creates a word cloud chart from elements of
words with word sizes specified by SizeData.
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wc = wordcloud(C) creates a word cloud chart from the elements of categorical array
C using frequency counts.

wc = wordcloud(bag) creates a word cloud chart from the bag-of-words or bag-of-n-
grams model bag.

wc = wordcloud(ldaMdl, topicIdx) creates a word cloud chart from the topic with
index topicIdx of the LDA model 1daMdl.

wc = wordcloud(parent, ) creates the word cloud in the figure, panel, or tab
specified by parent.

wc = wordcloud(  ,Name,Value) specifies additional WordCloudChart properties
using one or more name-value pair arguments.

Examples

Create Word Cloud from Text Data

Extract the text from sonnets. txt using extractFileText.

str = extractFileText("sonnets.txt");
extractBefore(str,"II")

ans =
“THE SONNETS

by William Shakespeare

I

From fairest creatures we desire increase,

That thereby beauty's rose might never die,

But as the riper should by time decease,

His tender heir might bear his memory:

But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
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Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Display the words from the sonnets in a word cloud.

figure
wordcloud(str)
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ans =
WordCloudChart with properties:

WordData: [1x2659 string]
SizeData: [1x2659 double]
MaxDisplayWords: 100

Show all properties
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Create Word Cloud from Table

Load the example data sonnetsTable. The table tbl contains a list of words in the
variable Word, and the corresponding frequency counts in the variable Count.

load sonnetsTable
head (tbl)

ans=8x2 table
Word Count

"'tis'
"Amen""’
"Fair'
"Gainst'
'Since'
'"This'
"Thou'
'"Thus'

RFHENRFRRPRNRFRE

Plot the table data using wordcloud. Specify the words and corresponding word sizes to
be the Word and Count variables respectively.

figure

wordcloud(tbl, 'Word', 'Count"');
title("Sonnets Word Cloud")
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Sonnets Word Cloud
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Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);
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Create a bag-of-words model using bag0fWords.
bag = bag0fWords(documents)

bag =
bagOfWords with properties:

Counts: [154x3092 double]
Vocabulary: [1x3092 string]

NumWords: 3092
NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);
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Create Word Cloud from LDA Topic

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default’.
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exampleFolder =
addpath(exampleF
rng('default"')

genpath(fullfile(matlabroot, 'examples', 'textanalytics'));

older)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;

bag = bag0fWords(documents)

bag =

bagOfWords with properties:

Counts:
Vocabulary:
NumWords:
NumDocuments:

Fit an LDA model with 20 topics.

mdl = fitlda(bag

Initial topic assignments sampled in 0.

3092
154

,20)

[154x3092 double]
[1x3092 string]

0410732 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
| 0 | 0.02 | | 1.159e+03 | 5.000 | 0 |
| 1 | 0.13 | 5.4884e-02 | 8.028e+02 | 5.000 | 0 |
| 2 | 0.07 | 4.7400e-03 | 7.778e+02 | 5.000 | 0 |
| 3 0.08 | 3.4597e-03 | 7.602e+02 | 5.000 | 0 |
| 4 | 0.08 | 3.4662e-03 | 7.430e+02 | 5.000 | 0 |
| 5| 0.07 | 2.9259e-03 | 7.288e+02 | 5.000 | 0 |
| 6 | 0.08 | 6.4180e-05 | 7.291e+02 | 5.000 | 0 |
mdl =

ldaModel with properties:

NumTopics:

0

WordConcentration:

CorpusTopicProbabilities:

2
1
TopicConcentration: 5
[
DocumentTopicProbabilities: [

1x20 double]
154x20 double]
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TopicWordProbabilities:
Vocabulary:
FitInfo:

figure

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicIdx)
end
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Visualize the first four topics using word clouds.
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Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments

str — Input text

string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

tbl — Input table
table

Input table, with columns specifying the words and word sizes. Specify the words and the
corresponding word sizes in the variables given by wordVar and sizeVar input
arguments respectively.

Data Types: table

wordVar — Table variable for word data
string scalar | character vector | numeric index | logical vector

Table variable for word data, specified as a string scalar, character vector, numeric index,
or a logical vector.

Data Types: single | double | int8 | intl16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

sizeVar — Table variable for size data
string scalar | character vector | numeric index | logical vector

Table variable for size data, specified as a string scalar, character vector, numeric index,
or a logical vector.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string
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words — Input words
string vector | cell array of character vectors

Input words, specified as a string vector or cell array of character vectors.

Data Types: string | cell

sizeData — Word size data
numeric vector

Word size data, specified as a numeric vector.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C — Input categorical data
categorical array

Input categorical data, specified as a categorical array. The function plots each unique
element of C with size corresponding to histcounts(C).

Data Types: categorical

bag — Input model
bag0fWords object | bag0OfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bag0fWords object or a
bagO0fNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an LdaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

parent — Parent
figure | panel | tab

Parent specified as a figure, panel, or tab.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'HighlightColor', 'blue' specifies the highlight color to be blue.

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer. The software
displays the MaxDisplayWords largest words.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color
name | matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an
N-by-3 matrix where N is the length of WordData. If Color is a matrix, then each row
corresponds to an RGB triplet for the corresponding word in WordData.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0, 1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or'r' Red [1 0 0]
‘green' or 'g’ Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yvellow' or 'y' Yellow [1 1 0]
‘magenta’ or 'm' Magenta [1 0 1]
‘cyan'or 'c' Cyan [0 1 1]

1-354




wordcloud

Option Description Equivalent RGB Triplet
'white' or 'w' White [11 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'’
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color
name

Word highlight color, specified as an RGB triplet, or a character vector containing a color
name. The software highlights the largest words with this color.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0, 1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
‘red' or 'r' Red [1 0 0]
‘green'or 'g’ Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [110]
‘magenta’ or 'm' Magenta [10 1]
‘cyan'or 'c' Cyan [0 1 1]
'white' or 'w' White [11 1]
'black' or 'k' Black [0 0 O]

Example: 'blue’
Example: [0 0 1]

Shape — Shape of word cloud
‘oval' (default) | ' rectangle’

Shape of word cloud chart, specified as 'oval' or 'rectangle’.
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Example: 'rectangle’

Output Arguments

wc — WordCloudChart object
WordCloudChart object

WordCloudChart object. You can modify the properties of a WordCloudChart after it is
created. For more information, see WordCloudChart Properties.

See Also
bagOfNgrams | bag0fWords | textscatter | textscatter3 | wordCloudCounts

Topics

“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”

Introduced in R2017b
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wordCloudCounts

Count words for word cloud creation

Syntax

T = wordCloudCounts(str)

Description

T = wordCloudCounts(str) tokenizes and preprocesses the text in str for word cloud
creation and returns a table T of words and frequency counts.

Examples

Word Cloud Frequency Counts

Extract the text from sonnets. txt using extractFileText.

str = extractFileText("sonnets.txt");
View the first sonnet.

i = strfind(str,"I1");

ii = strfind(str,"II");

start = i(1);

fin = 1i(1);
extractBetween(str,start,fin-1)

ans =
"I

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
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But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Tokenize and preprocess the sonnets text and create a table of word frequency counts.

T = wordCloudCounts(str);

head(T)
ans=8x2 table
Word Count
"thy" 281
"thou" 234
"Tove" 215
"thee" 161
"eyes" 93
"doth" 88
"time" 78
"beauty" 75

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]

Data Types: string | char | cell
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Output Arguments

T — Table of word counts

table

Table of words counts sorted in order of importance. The table has columns:

Word String scalar of the word.

Count The number of times the word appears in the documents. The
function groups the counts of words that differ only by case or have
a common stem according to normalizeWords. For example, the
function groups the counts for "walk", "Walking", "walking", and
"walks".

See Also

textscatter | textscatter3 |wordcloud

Topics

“Visualize Text Data Using Word Clouds”

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Analyze Text Data Using Topic Models”

Introduced in R2017b
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wordEmbedding

Map words to vectors and back

Description

Word embeddings, popularized by the word2vec, GloVe, and fastText libraries, map words
in a vocabulary to real vectors.

The vectors attempt to capture the semantics of the words, so that similar words have
similar vectors. Some embeddings also capture relationships between words, such as
"king is to queen as man is to woman". In vector form, this relationship is king - man +
woman = queen.

Creation

Create a word embedding by loading a pretrained embedding using
fastTextWordEmbedding, reading an embedding from a file using
readWordEmbedding, or by training an embedding using trainWordEmbedding.

Properties

Dimension — Dimension of word embedding
nonnegative integer

Dimension of the word embedding, specified as a nonnegative integer.

Example: 300

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.

Data Types: string
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Object Functions

ismember Test word is member of word embedding
vec2word Map embedding vector to word
word2vec Map word to embedding vector

writeWordEmbedding Write word embedding file

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb, "king");

man = word2vec(emb, "man");

woman = word2vec(emb, "woman");

word = vec2word(emb,king - man + woman)

word =
Ilqueenll

Write Word Embedding to File
Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.
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filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument (textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 0 Remaining time: O hours O minutes.

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb, filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:
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Dimension: 50
Vocabulary: [1x9999 string]

Map the words "king", "man", and "woman" to vectors using word2vec.
king = word2vec(emb, "king");

man = word2vec(emb, "man");
woman = word2vec(emb, "woman");

Map the vector king - man + woman to a word using vec2word.
word = vec2word(emb,king - man + woman)

word =
“queen”

Find Closest Words to Vector
Find the top five closest words to a word embedding vector and their distances.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.
filename = "exampleWordEmbedding.vec";

emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Map the words "king", "man", and "woman" to vectors using word2vec.
king = word2vec(emb, "king");

man = word2vec(emb, "man");

woman = word2vec(emb, "woman");

Map the vector king - man + woman to a word using vec2word. Find the top five
closest words using the Euclidean distance metric.

k
M

5;
king - man + woman;
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Distance

1-364

[words,dist] = vec2word(emb,M,k,
'Distance', 'euclidean');

Plot the words and distances in a bar chart.

figure;

bar(dist)

xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")

Distances to Vector

queen king princess prince monarch

Word

. “Visualize Word Embeddings Using Text Scatter Plots”
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. “Prepare Text Data for Analysis”
. “Extract Text Data from Files”
See Also

fastTextWordEmbedding | ismember | readWordEmbedding | textscatter |
textscatter3 | trainWordEmbedding | vec2word | word2vec |
writeWordEmbedding

Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2017b
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writeTextDocument

Write documents to text file

Syntax

writeTextDocument (documents, filename)
writeTextDocument(documents, filename, 'Append', true)

Description

writeTextDocument (documents, filename) writes documents to the specified text
file. The function writes one document per line with a space between each word in UTF-8.

writeTextDocument (documents, filename, 'Append', true) appends to the file
instead of overwriting.

Examples

Write Documents to Text File

Write an array of documents to a text file.

documents = tokenizedDocument([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

filename = "documents.txt";
writeTextDocument(documents, filename)
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Append Documents to Text File
Write an array of documents to a text file by appending the documents one at a time.

Create an array of tokenized documents.
documents = tokenizedDocument ([
"an example of a short sentence"
"a second short sentence"])

documents =
2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence
Write the first document to the file.

filename = "documents.txt";
writeTextDocument(documents (1), filename)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str =
"an example of a short sentence"

Append the second document to the text file.
writeTextDocument(documents(2),filename, 'Append', true)

View the contents of the file using extractFileText.

str

extractFileText(filename)
str =

"an example of a short sentence
a second short sentence"
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Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

See Also

extractFileText | tokenizedDocument

Topics

“Extract Text Data from Files”

“Prepare Text Data for Analysis”

“Create Simple Text Model for Classification”

Introduced in R2017b
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writeWordEmbedding

Write word embedding file

Syntax

writeWordEmbedding(emb, filename)

Description

writeWordEmbedding(emb, filename) writes the word embedding emb to the file
filename. The function writes the vocabulary in UTF-8 in word2vec text format.

Examples

Write Word Embedding to File
Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed. txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed. txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.
emb = trainWordEmbedding(documents)
Training: 100% Loss: 0O Remaining time: O hours O minutes.

emb =
wordEmbedding with properties:
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Dimension: 100
Vocabulary: [1x401 string]
Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb, filename)

Read the word embedding file using readWordEmbedding.

emb

readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 100
Vocabulary: [1x401 string]

Input Arguments

emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

Data Types: string | char

See Also

fastTextWordEmbedding | ismember | readWordEmbedding | trainWordEmbedding
| vec2word | word2vec | wordEmbedding
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Topics

“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

“Extract Text Data from Files”

Introduced in R2017b

1-371






